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What you have is an experience, not an experiment.

—R. A. Fisher

Happy is the person who gets to know the reasons for things.

—Virgil

CHAPTER OVERVIEW

Why do people behave the way they do? How can we help people change?

To answer these questions, we must be able to isolate the underlying

causes of behavior, and to do that, we must design a study that has inter-

nal validity: the ability to determine whether a factor causes an effect.

This chapter introduces you to one of the easiest ways to establish that

a factor causes an effect: the simple experiment. You will start by learning

the basic logic behind the simple experiment. Then, you will learn how to

weigh statistical, ethical, and validity issues in order to design a useful sim-

ple experiment. Finally, you will learn how to interpret the results of such

an experiment.

LOGIC AND TERMINOLOGY
The simple experiment involves two groups of participants. At the start of the
experiment, the two groups should not differ from each other in any system-
atic way, but during the experiment, the experimenter will treat one group
differently from the other. For example, the experimenter may

● Assign the groups different types of activities (e.g., playing violent versus
nonviolent video games)

● Assign the groups different amounts of an activity (e.g., one group might
meditate for 30 minutes whereas the other group meditates for 10
minutes)

● Appear one way (e.g., well dressed) to one group and another way (e.g.,
casually dressed) to the other group

● Have confederates (people who pretend to be participants but who are
actually the researcher’s assistants) behave one way (e.g., agreeing with
the participant) when interacting with members of one group and another
way (e.g., disagreeing with the participant) when interacting with the
other group

● Have a certain object (e.g., a mirror or a gun) in the testing room when
members of one group are tested but not when members of the other
group are tested

● Make the testing room’s environment more intense on a certain dimen-
sion (e.g., how hot it is, how loud it is, how it is lit, how it smells, or the
concentration of negative ions in it) when members of one group are
tested and less intense on that dimension when the other group is tested
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● Give the groups different instructions (“memorize these words by repeating
them over and over” versus “make a sentence out of these words,” or “keep
a log of what you have to be grateful for” versus “keep a log of hassles you
encounter”)

● Give the groups different printed stimuli (whether or not the sentences
participants are asked to unscramble make participants think about older
people, whether the words participants are to memorize are concrete and
easy to visualize [e.g., “bell”] or abstract and hard to visualize [e.g., “lib-
erty”], whether the exam is printed on blue or white paper, whether the
people in the photograph are attractive or unattractive)

● Give the groups different contexts for interpreting stimuli (the researcher
may vary the gender, age, attractiveness, or background of the person
whose job application, school record, essay, or character is being judged)

● Give the groups different scenarios (the situations may be the same but
worded differently [e.g., “Valerie and I are best friends” versus “We are
best friends” or “You can have $5.00 now or $6.20 in a month” versus
“You can have $5.00 now and $0 in a month or $0 now and $6.20 in a
month”] or the scenarios may differ in one respect (e.g., gender, race, or
job experience of characters; the possible or likely causes of an event
[e.g., the person was—or was not—drunk, the disease could—or could
not—be transmitted through sexual contact])

● Give the groups different feedback (“the test suggests you are outgoing”
versus “the test suggests you are shy,” “the test suggests you will spend
much of your future alone” versus, “the test suggests you will spend
much of your future with friends and loved ones” or “you did well on
the task” versus “your performance on the task was average)

● Give the groups different chemicals (sugar-sweetened lemonade versus
artificially sweetened lemonade, caffeinated versus decaffeinated colas)

Often, half the participants (the treatment group) receive a treatment,
whereas the other half (the no-treatment group) receive no treatment. If, at the
end of the experiment, the two groups differ significantly, we can conclude that
the treatment—the only systematic difference between the groups—caused that
significant difference.

But how do we set up a situation in which the only systematic difference
between the no-treatment and the treatment groups is the treatment? The answer
is independent random assignment. In random assignment, a process similar to
determining what treatment the participant will receive based on a coin flip, every
participant—regardless of that participant’s characteristics—has an equal chance
of being assigned to either the treatment or no-treatment group. If we provide
each participant an equal chance of being assigned to either group, there will still
be unsystematic, chance differences between our groups before we introduce the
treatment, but there should not be any systematic differences between them.

To review, random assignment, the key to the simple experiment, involves
two processes. First, we randomly divide our participants into two similar halves.
Second, we assign one of those halves to get a treatment different from the other.
For example, half may be allowed to choose the deadlines for their term papers,
whereas the other half are not; or half the participants would be given a violent
video game to play, whereas the other half would be given a neutral video game.
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We have given you a general idea of what random assignment is, but
how would you actually randomly assign participants to either a no-
treatment or a treatment group?1 You might think that you could flip a coin
for each participant: If the coin comes up heads, the participant gets the treat-
ment; if the coin comes up tails, the participant does not get the treatment.
However, coin-flipping does not work because “a tossed coin is slightly more
likely to land on the face it started out on than on the opposite face”
(Klarreich, 2004, p. 363). Even computers have trouble producing random
sequences (Klarreich, 2004). So what should you do? (The “eenie meenie
minie moe” method is not an option because it isn’t random.) The solution
is to use a random numbers table to assign participants to condition
(Wilkinson & the Task Force on Statistical Inference, 1999). To learn how
to use a random numbers table, see Box 10.1.

Experimental Hypothesis: The Treatment Has an Effect
If you do not randomly assign your participants to two groups, you do not
have a simple experiment. However, before you randomly assign participants,
you must have an experimental hypothesis: a prediction that the treatment
will cause an effect. To generate an experimental hypothesis, you must predict
that the treatment and no-treatment groups will differ because of the treat-
ment’s effect. For example, you might hypothesize that participants getting 3
hours of full-spectrum light will be happier than those getting no full-
spectrum light because full-spectrum light causes increases in happiness.

Although you can make a wide variety of experimental hypotheses (e.g.,
you could hypothesize that participants forced to trade their lottery tickets
would be unhappier than those who were not forced to trade their lottery
tickets or that participants forced to describe their relationship with their
friend with “My friend and I _______” sentences would be less happy with
the relationship than people forced to describe their relationship with
“We_____” sentences), realize that not all hypotheses are cause–effect
hypotheses. Sometimes, hypotheses involve describing what happens rather
than finding out what makes things happen. If you generate a hypothesis
that is not a cause–effect statement, it is not an experimental hypothesis.
Thus, if you hypothesize that men are more romantic than women, you do
not have an experimental hypothesis. Similarly, if you predict that athletes
will be more assertive than nonathletes, you do not have an experimental
hypothesis. In short, to have an experimental hypothesis, you must predict
that some treatment that you manipulate will cause an effect.

Null Hypothesis: The Treatment Does Not Have an Effect
Once you have an experimental (cause–effect) hypothesis, pit it against the
null hypothesis: the hypothesis that the treatment has no effect. The null
hypothesis essentially states that any difference you observe between the treat-
ment and no-treatment group scores could be due to chance. Therefore, if our
experimental hypothesis was that getting 3 hours of full-spectrum lighting

1 Instead of using pure independent random assignment, researchers typically use independent
random assignment with the restriction that an equal number of participants must be in each
group.
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BOX 10.1 Randomly Assigning Participants to Two Groups

There are many ways to randomly assign participants
to groups. Your professor may prefer another
method. However, following these steps guarantees
random assignment and an equal number of
participants in each group.
Step 1: On the top of a sheet of paper, make two
columns. Title the first “Control Group.” Title the
second “Experimental Group.” Under the group
names, draw a line for each participant you will need.
Thus, if you were planning to use eight participants
(four in each group), you would draw four lines under
each group name.

CONTROL GROUP EXPERIMENTAL GROUP

_________ _________

_________ _________

_________ _________

_________ _________

Step 2: Turn to a random numbers table, like the one
at the end of this box (or the one in Appendix F). Roll a
die to determine which column in the table you will
use. Make a note in that column so that others could
check your methods (Wilkinson & the Task Force on
Statistical Inference, 1999).
Step 3: Assign the first number in the column to the
first space under Control Group, the second number
to the second space, and so on. When you have filled
all the spaces for the control group, place the next
number under the first space under Experimental
Group and continue until you have filled all the
spaces. Thus, if you used the random numbers table
at the end of this box and you rolled a “5,” you would
start at the top of the fifth column of that table (the
column starting with the number 81647), and your
sheet of paper would look like this:

CONTROL GROUP EXPERIMENTAL GROUP

81647 06121

30995 27756

76393 98872

07856 18876

Step 4: At the end of each control group score, write
down a “C.” At the end of each experimental group
score, write down an “E.” In this example, our sheet
would now look like this:

CONTROL GROUP EXPERIMENTAL GROUP

81647C 06121E

30995C 27756E

76393C 98872E

07856C 18876E

Step 5: Rank these numbers from lowest to highest.
Then, on a second piece of paper, put the lowest
number on the top line, the second lowest number on
the next line, and so on. In this example, your page
would look like this:

06121E 30995C

07856C 76393C

18876E 81647C

27756E 98872E

Step 6: Label the top line “Participant 1,” the second
line “Participant 2,” and so forth. The first participant
who shows up will be in the condition specified on
the top line, the second participant who shows up will
be in the condition specified by the second line, and
so forth. In this example, the first participant will be in
the experimental group, the second in the control
group, the third and fourth in the experimental group,
the fifth, sixth, and seventh in the control group, and
the eighth in the experimental group. Thus, our sheet
of paper would look like this:

Participant Number 1 = 06121E
Participant Number 2 = 07856C
Participant Number 3 = 18876E
Participant Number 4 = 27756E
Participant Number 5 = 30995C
Participant Number 6 = 76393C
Participant Number 7 = 81647C
Participant Number 8 = 98872E

(Continued)
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will cause people to be happier, the null hypothesis would be getting 3 hours
of full-spectrum lighting will have no demonstrated effect on happiness.

If your results show that the difference between groups is probably not
due to chance, you can reject the null hypothesis. By rejecting the null
hypothesis, you tentatively accept the experimental hypothesis: You conclude
that the treatment has an effect.

But what happens if you fail to demonstrate conclusively that the treat-
ment has an effect? Can you say that there is no effect for full-spectrum light-
ing? No, you can only say that you failed to prove beyond a reasonable
doubt that full-spectrum lighting causes a change in happiness. In other
words, you’re back to where you were before you began the study: You do
not know whether full-spectrum lighting causes a change in happiness.2

To reiterate a key point, the failure to find a treatment effect doesn’t
mean that the treatment has no effect. If you had looked more carefully, you
might have found the effect.

To help yourself remember that you can’t prove the null hypothesis, think
of the null hypothesis as saying, “The difference between conditions may be
due to chance.” Even if you could prove that “The difference may be due to

Step 7: To avoid confusion, recopy your list, but
make two changes. First, delete the random
numbers. Second, write out “Experimental” and
“Control.” In this example, your recopied list would
look like the following:

Participant Number 1 = Experimental
Participant Number 2 = Control
Participant Number 3 = Experimental
Participant Number 4 = Experimental
Participant Number 5 = Control
Participant Number 6 = Control
Participant Number 7 = Control
Participant Number 8 = Experimental

RANDOM NUMBERS TABLE

COLUMN

Row 1 2 3 4 5 6

1 10480 15011 01536 02011 81647 69179

2 22368 46573 25595 85393 30995 89198

3 24130 48360 22527 97265 76393 64809

4 42167 93093 06243 61680 07856 16376

5 37570 39975 81837 76656 06121 91782

6 77921 06907 11008 42751 27756 53498

7 99562 72905 56420 69994 98872 31016

8 96301 91977 05463 07972 18876 20922

BOX 10.1 Continued

2Those of you who are intimately familiar with confidence intervals may realize that null results
do not necessarily send the researcher back to square one. Admittedly, we do not know whether
the effect is greater than zero, but we could use confidence intervals to estimate a range in which
the effect size probably lies. That is, before the study, we may have no idea of the potential size
of the effect. We might think the effect would be anywhere between −100 units and þ100 units.
However, based on the data collected in the study, we could estimate, with 95% confidence, that
the effect is between a certain range. For example, we might find, at the 95% level of confidence,
that the effect is somewhere in the range between −1 units and þ3 units.
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chance,” what would you have you proved? Certainly, you would not have
proved that the difference is due to chance.

Conclusions About Experimental and Null Hypotheses
In summary, you have learned four important points about experimental and
null hypotheses:

1. The experimental hypothesis is that the treatment has an effect.
2. The null hypothesis is that the treatment has no effect.
3. If you reject the null hypothesis, you can tentatively accept the hypothesis

that the treatment has an effect.
4. If you fail to reject the null hypothesis, you can’t draw any conclusions.

To remember these four key points, think about these hypotheses in the
context of a criminal trial. In a trial, the experimental hypothesis is that the
defendant did cause the crime; the null hypothesis is that the defendant did
not commit the crime. The prosecutor tries to disprove the null hypothesis so
that the jury will accept the experimental hypothesis. In other words, the
prosecutor tries to disprove, beyond a reasonable doubt, the hypothesis that
the defendant is “not guilty.” If the jury decides that the null hypothesis is
highly unlikely, they reject it and find the defendant guilty. If, on the other
hand, they still have reasonable doubt, they fail to reject the null hypothesis
and vote “not guilty.” Note that their “not guilty” verdict is not an “inno-
cent” verdict. Instead, it is a verdict reflecting that they are not sure, beyond
a reasonable doubt, that the null hypothesis is false.

Manipulating the Independent Variable
Once you have your hypotheses, your next step is to manipulate the treat-
ment. In any experiment, “participants are presented with the same general
scenario (e.g., rating photographs of potential dating partners), but at least
one aspect of this general scenario is manipulated” (Ickes, 2003, p. 22). In
the simplest case of manipulating the treatment, you administer (assign) the
treatment to some participants and withhold it from others. To isolate the
treatment’s effect, the conditions must be the same except for the treatment
manipulation, as in the following classic experiments:

● In the first study showing that leading questions could bias eyewitness
testimony, Loftus (1975) had students watch a film of a car accident and
then gave students a questionnaire. The manipulation was whether the
first question on the questionnaire was “How fast was Car A going when
it ran the stop sign?”—a misleading question because Car A did not run
the stop sign—or “How fast was Car A going when it turned right?”—a
question that was not misleading.

● In the first study showing that people’s entire impressions of another per-
son could be greatly influenced by a single trait, Asch (1946) had partici-
pants think about a person who was described as either (a) “intelligent,
skillful, industrious, warm, determined, practical, cautious” or (b) “intel-
ligent, skillful, industrious, cold, determined, practical, cautious.”

● In the first study showing that sex role stereotypes affect how people per-
ceive infants, Condry and Condry (1976) had all participants use a form
to rate the same baby. The only difference between how participants were
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treated was whether the infant rating form listed the infant’s name (a) as
“David” and sex as “male” or (b) as “Dana” and sex as “female.”

● In the first study showing that the pronouns people use when they
describe their closest relationships affect how people see those relation-
ships, Fitzsimons and Kay (2004) had all participants rate their relation-
ship with their closest same-sex friend after writing five sentences about
that friend. The only difference between groups was that one group was
told to begin each sentence with “We,” and was given the example, “We
have known each other for 2 years,” whereas the other group was told to
begin each sentence with “(Insert friend’s name) and I,” and given the
example, “John and I have known each other for 2 years.”

To understand how you would manipulate a treatment, let’s go back to
trying to test the hypothesis about the effect of full-spectrum lighting on
mood. To do this, you must vary the amount of light people get—and the
amount should be independent of (should not depend on or be affected by)
the individual’s personal characteristics. To be specific, the amount of full-
spectrum light participants receive should be determined by independent ran-
dom assignment. Because the amount varies between the treatment group and
the no-treatment group, because it varies independently of each participant’s
characteristics, and because it is determined by independent random assign-
ment, full-spectrum lighting (the experimental intervention) is the independent
variable.

In simple experiments, there are two values, or levels of an independent
variable. The two levels can be types of treatment (e.g., lighting versus psy-
chotherapy) or amounts (e.g., 1 hour of lighting versus 2 hours of lighting).
In our lighting experiment, participants are randomly assigned to one of the
following two levels of the independent variable: (1) 3 hours of full-spectrum
lighting and (2) no full-spectrum lighting.

Experimental and Control Groups: Similar, but Treated Differently
The participants who are randomly assigned to get the higher level of the
treatment (3 hours of full-spectrum light) are usually called the experimental
group. The participants who are randomly assigned to get a lower level of
the treatment (in this case, no treatment) are usually called the control
group. Thus, in our example, the experimental group is the treatment group
and the control group is the no-treatment group.

The control group is a comparison group. We compare the experimental
(treatment) group to the control (no-treatment) group to see whether the
treatment had an effect. If the treatment group scores the same as the com-
parison group, we would suspect that the treatment group would have scored
that way even without the treatment. If, on the other hand, the treatment
group scores differently than the control group, we would suspect that the
treatment had an effect. For example, Ariely (2007) gave experimental group
participants a chance to cheat. After taking a 50-item test, all participants
transferred their answers from their tests to an answer sheet. For participants
in the experimental group, the answer sheets already had the correct answers
marked. Experimental group participants then shredded their tests and
handed in their answer sheets. In this condition, students averaged about
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36 questions correct. Did they cheat—and, if they did, how could Ariely pos-
sibly know? The only way to find out whether the experimental group chea-
ted was to compare their scores to control group participants who were not
allowed to cheat. Those control participants answered only about 33 ques-
tions correctly. By comparing the experimental group to the control group,
Ariely found out that the experimental group cheated. Note that his conclu-
sion—like that of any experimenter who uses a control group—only makes
sense if the groups were equivalent at the start of the experiment. Thus,
experimenters need to make sure that there are no systematic differences
between the groups before the experimenter gives the groups different levels
of the independent variable.

As the terms experimental group and control group imply, you should
have several participants (preferably more than 30) in each of your condi-
tions. The more participants you have, the more likely it is that your two
groups will be similar at the start of the experiment. Conversely, the fewer
participants you have, the less likely it is that your groups will be similar
before you administer the treatment. For example, if you are doing an experi-
ment to evaluate the effect of a strength pill and have only two participants (a
6 ft 4 in., 280-lb [1.9 m, 127 kg] offensive tackle and a 5 ft 1 in., 88-lb [1.5
m, 40 kg] person recovering from a long illness), random assignment will not
have the opportunity to make your “groups” equivalent. Consequently, your
control group would not be a fair comparison group.

The Value of Independence: Why Control and Experimental Groups
Shouldn’t Be Called “Groups”
Although we have noted that the experimental and control groups are groups
in the sense that there should be several participants in each “group,” that is
the only sense in which these “groups” are groups. To conduct an experi-
ment, you do not find two groups of participants and then randomly assign
one group to be the experimental group and the other to be the control
group.

Why You Should Not Choose Two Preexisting Groups
To see why not, suppose you were doing a study involving 10,000 janitors at
a Los Angeles company and 10,000 managers at a New York company. You
have 20,000 people in your experiment: one of the largest experiments in his-
tory. Then, you flip a coin and—on the basis of that single coin flip—assign
the LA janitors to no treatment and the New York managers to treatment.
Even though you have 10,000 participants in each group, your treatment and
no-treatment groups differ in at least two systematic ways (where they live
and what they do) before the study begins. Your random assignment is no
more successful in making your groups similar than it was when you had
only two participants. Consequently, to get random assignment to equalize
your groups, you need to assign each participant independently: individually,
without regard to how previous participants were assigned.

Why You Should Not Let Your Groups Become “Groups”
Your concern with independence does not stop at assignment. After you have
independently assigned participants to condition, you want each of your par-
ticipants to remain independent. To maintain independence, do not test the
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control participants in one group session and the experimental participants in
a separate group session. Having one testing session for the control group
and a second session for the experimental group hurts independence in two
ways.

First, when participants are tested in groups, they may become group
members who influence each other’s responses rather than independent indi-
viduals. For example, instead of giving their own individual, independent
responses, participants might respond as a conforming mob.

As a concrete example of the perils of letting participants interact, imag-
ine that you are doing an ESP experiment. In the control group, only 30 of
the 60 participants correctly guessed that the coin would turn up heads. In
the experimental group, on the other hand, all 60 participants correctly
guessed that the coin would turn up heads. Had each experimental group
participant made his or her decision independently, such results would
rarely3 happen by chance. Thus, we would conclude that the treatment had
an effect. However, if all the experimental group members talked to one
another and made a group decision, they were not acting as 60 individual
participants but as one group. In that case, the results would not be so
impressive: Because all 60 experimental participants acted as one, the chances
of all of them correctly guessing the coin flip were the same as the chances of
one person correctly guessing a coin flip: 1 in 2 (50%).

Although this example shows what can happen when participants are
tested in groups and allowed to interact freely, interaction can disturb inde-
pendence even when group discussion is prohibited. Participants may influ-
ence one another through inadvertent outcries (laughs, exclamations like,
“Oh no!”) or through subtle nonverbal cues. In our lighting–happiness exper-
iment, if we tested all the participants in a single group session, one partici-
pant who is crying uncontrollably might cause the entire experimental group
to be unhappy, thereby leading us to falsely conclude that the lighting caused
unhappiness. If, on the other hand, we tested each participant individually,
the unhappy participant’s behavior would not affect anyone else’s responses.

The second reason for not testing all the experimental participants in one
session and all the control participants in another is that such group testing
turns the inevitable, random differences between testing sessions into system-
atic effects. For instance, suppose that when the experimental group was
tested, there was a distraction in the hall, but there was no such distraction
while the control group was tested. Like the treatment, this distraction was
presented to all the experimental group participants, but to none of the con-
trol group participants. Thus, if the distraction did have an effect, its effect
might be mistaken for a treatment effect. If, on the other hand, participants
were tested individually, it is unlikely that only the experimental participants
would be exposed to distractions. Instead, distractions would have a chance
to even out so that participants in both groups would be almost equally
affected by distractions.

But what if you are sure you won’t have distractions? Even then, the ses-
sions will differ in ways unrelated to the treatment. If you manage to test the
participants at the same time, you’ll have to use different experimenters and

3To be more precise, it should happen with a probability of (1/2)60, which is less than
.000000000000000009% of the time.
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different testing rooms. If you manage to use the same experimenter and test-
ing room, you’ll have to test the groups at different times. Consequently, if
you find a significant difference between your groups, you will have trouble
interpreting those results. Specifically, you have to ask, “Is the significant dif-
ference due to the groups getting different levels of the treatment or to the
groups being tested under different conditions (e.g., having different experi-
menters or being tested at different times of day)?”

To avoid these problems in interpreting your results, make sure that the
treatment is the only factor that systematically varies. In other words, use
independent random assignment and then test your participants individually
(or in small groups) so that random differences between testing sessions have
a chance to even out. If you must run participants in large groups, do not run
groups made up exclusively of either experimental or control participants.
Instead, run groups made up of both control and experimental participants.

The Value of Assignment (Manipulating the Treatment)
We have focused on the importance of independence to independent random
assignment. Independence helps us start the experiment with two “groups” of
participants that do not differ in any systematic way. But assignment is also a
very important aspect of independent random assignment.

Random Assignment Makes the Treatment the Only Systematic Difference
Between Groups
Random assignment to treatment group helps ensure that the only systematic
difference between the groups is the treatment. With random assignment, our
groups will be equivalent on the nontreatment variables we know about as
well as on the (many) nontreatment variables we don’t know about.

In our experiment, random assignment makes it so that one random sam-
ple of participants (the experimental group) is assigned to receive a high level
of the independent variable whereas the other random sample of participants
(the control group) is assigned to receive a low level of the independent vari-
able. If, at the end of the study, the groups differed by more than would be
expected by chance, we could say that the difference was due to the only non-
chance difference between them: the treatment.

Without Random Assignment You Do Not Have a Simple Experiment
If you cannot randomly assign participants to your different groups, you can-
not do a simple experiment. Because you cannot randomly assign participants
to have certain personal characteristics, simple experiments cannot be used to
study the effects of participant characteristics such as gender, race, personal-
ity, and intelligence.4 For example, it makes no sense to assign a man to be a
woman, a 7 ft 2 in. (218 cm) person to be short, or a shy person to be
outgoing.

4You can, however, use experiments to investigate how participants react to people who vary in
terms of these characteristics. For example, you can have an experiment in which participants
read the same story except that one group is told that the story was written by a man, whereas
the other group is told that the story was written by a woman. Similarly, you can randomly
determine, for each participant, whether the participant interacts with a male or female
experimenter.
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To see why we need to be able to assign participants, let’s imagine that
you try to look at the effects of lighting on mood without using random
assignment. Suppose you get a group of people who use light therapy and
compare them to a group of people who do not use light therapy. What
would be wrong with that?

The problem is that you are selecting two groups of people who you
know are different in at least one way, and then you are assuming that they
don’t differ in any other respect. The assumption that the groups are identical
in every other respect is probably wrong. The light therapy group probably
feels more depressed, lives in colder climates, is more receptive to new ideas,
and is richer than the other group.

Because the groups differ in many ways other than in terms of the “treat-
ment,” it would be foolish to say that the treatment—rather than one of these
many other differences between the groups—is what caused the groups to
score differently on the happiness measure. For example, if the group of light
users is more depressed than our sample of nonusers, we could not conclude
that the lighting caused their depression. After all, the lighting might be a par-
tial cure for—rather than a cause of—their depression.

But what if the group of lighting users is less depressed? Even then, we
could not conclude that the lighting is causing an effect. Lighting users may
be less depressed because they are richer, have more spare time, or differ in
some other way from those who don’t use lights. In short, if you do not ran-
domly assign participants to groups, you cannot conclude anything about the
effects of a treatment.

If, on the other hand, you start with one group of participants and then
randomly assign half to full-spectrum lighting and half to normal lighting,
interpreting differences between the groups would be much simpler. Because
the groups probably were similar before the treatment was introduced, large
group differences in happiness are probably due to the only systematic differ-
ence between them—the lighting.

Collecting the Dependent Variable
Before you can determine whether the lighting caused the experimental group
to be happier than the control group, you must measure each participant’s
happiness. You know that each person’s happiness will be somewhat depen-
dent on the individual’s personality and you predict that his or her score on
the happiness variable will also be dependent on the lighting. Therefore,
scores on the happiness measure are your dependent variable. Because the
dependent variable is what the participant does that you measure, the depen-
dent variable is also called the dependent measure.

The Statistical Significance Decision: Deciding Whether to Declare
That a Difference Is Not a Coincidence
After measuring the dependent variable, you will want to compare the experi-
mental group’s happiness scores to the control group’s. One way to make this
comparison is to subtract the average of the happiness scores for the control
(comparison) group from the average of the experimental group’s happiness
scores.

Unfortunately, knowing how much the groups differ doesn’t tell you how
much of an effect the treatment had. After all, even if the treatment had no

CHAPTER 10 • Logic and Terminology 345



effect, nontreatment factors would probably still make the groups differ. In
other words, even if the treatment had no effect, the groups may differ due
to random error.

How can you determine that the difference between groups is due to
something more than random error? To determine the probability that the
difference is not exclusively due to chance, you need to use inferential statis-
tics: the science of chance.

Statistically Significant Results: Declaring That the Treatment
Has an Effect
If, after using statistics, you find that the difference between your groups is
greater than could be expected if only chance were at work, your results are sta-
tistically significant. The term statistical significance means that you are sure,
beyond a reasonable doubt, that the difference you observed is not a fluke.

What is a reasonable doubt? Usually, before researchers commit them-
selves to saying that the treatment has an effect, they want a 5% probability
(p ¼ .05) or less (p < .05) that they would get such a pattern of results
when there really was no effect. Consequently, you may hear researchers say
that their results were “significant at the point-oh-five level” and, in journal
articles, you will often see statements like, “the results were statistically signif-
icant (p < .05).”

To review, if you do a simple experiment, you will probably find that the
treatment group mean is different from the control group mean. Such a differ-
ence is not, by itself, evidence of the treatment’s effect. Indeed, because ran-
dom assignment does not create identical groups, you would expect the two
group means to differ to some extent. Therefore, the question is not “Is there
a difference between the group means?” but rather “Is the difference between
the group means a reliable one—one bigger than would be expected if only
random factors were at work?” To answer that question, you need to use
statistics.

By using statistics, you might find that if only chance factors were at work
(i.e., if the independent variable had no effect), you would get a difference as
large as that less than 5% of the time. If differences as big or bigger than
what you found occur less than 5% of the time by chance alone (p < .05)
when the null hypothesis is true, you would probably conclude that the null
hypothesis is not true. To state your conclusion more formally, you might say
that “the results are statistically significant at the .05 level.” By “statistically
significant,” you mean that because it’s unlikely that the difference between
your groups is due to chance alone, you conclude that some of the difference
was due to the treatment. With statistically significant results, you would be
relatively confident that if you repeated the study, you would get the same pat-
tern of results—the independent variable would again cause a similar type of
change in the scores on the dependent variable. In short, statistical significance
suggests that the results are reliable and replicable.

Statistically Significant Effects May Be Small
Statistical significance, however, does not mean that the results are significant
in the sense of being large. Just because a difference is statistically significant—
reliably different from zero—doesn’t mean the difference is large. Even a tiny
difference can be statistically reliable. For example, if you flipped a coin 5,000
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times and it came up heads 51% of the time, this 1% difference from what
would be expected by chance (50% heads) would be statistically significant.

Statistically Significant Results May Be Insignificant (Trivial)
Nor does statistical significance mean that the results are significant in the
sense of being important. If you have a meaningless hypothesis, you may
have results that are statistically significant but scientifically meaningless.

Statistically Significant Results May Refute Your Experimental Hypothesis
Finally, statistically significant results do not necessarily support your hypoth-
esis. For example, suppose your hypothesis is that the treatment improves
behavior. A statistically significant effect for the treatment would mean that
the treatment had an effect. But did the treatment improve behavior or make
it worse? To find out, you have to look at the means to see whether the treat-
ment group or no-treatment group is behaving better.

Summary of the Limitations of Statistically Significant Results
In short, statistically significant results tell you nothing about the direction,
size, or importance of the treatment effect (see Table 10.1). Because of the
limitations of statistical significance, the American Psychological Association
appointed a task force to determine whether significance testing should be
eliminated. The task force did “not support any action that could be inter-
preted as banning the use of null significance testing or p values in psycholog-
ical research and publication” (American Psychological Association, 1996b).
However, the task force did recommend that, in addition to reporting
whether the results were statistically significant, authors should provide infor-
mation about the direction and size of effects.

Null Results: Why We Can’t Draw Conclusions From
Nonsignificant Results
You now know how to interpret statistically significant results. But what if
your results are not statistically significant? That is, what if you can’t reject
the null hypothesis that the difference between your groups could be due to
chance? Then, you have failed to reject the null hypothesis; therefore, your
results would be described as “not significant.”

As the phrase “not significant” suggests, you can’t draw any conclusions
from such findings. With nonsignificant results (also called null results), you

TABLE 10.1
Limits of Statistical Significance

Statistically significant differences are

1. probably not due to chance alone
2. not necessarily large
3. not necessarily in the direction you predicted
4. not necessarily important

CHAPTER 10 • Logic and Terminology 347



do not know whether the treatment has an effect that you failed to find or
whether the treatment really has no effect (see Figure 10.1).

Nonsignificant results are analogous to a “not guilty” verdict: Is the
defendant innocent, or did the prosecutor present a poor case? Often, defen-
dants get off, not because of overwhelming proof of their innocence, but
because of lack of conclusive proof of their guilt.

You have seen that nonsignificant results neither confirm nor deny that
the treatment had an effect. Unfortunately, you will find some incompetents
treating null results as proof that the treatment has an effect—whereas other
bad researchers will treat null results as proof that the treatment has no effect
(see Table 10.2).

Nonsignificant Results Are Not Significant
All too often, people act like nonsignificant results are really significant. They
may say, “The difference between my groups shows that the treatment had an

Treatment or chanceBefore doing a statistical analysis, we know that the
difference between groups could be due to either:

Treatment or chance
After doing a statistical analysis that reveals a
significant difference, we know that the difference
between the groups is probably due to:

Treatment or chanceIf the statistical test fails to reach significance, then
the difference could be due to either:

FIGURE 10.1 The Meaning of Statistical Significance
If the results are statistically significant, we can conclude that the difference between
the groups is not due entirely to chance and therefore some of the difference must be
due to the treatment. However, if the results are not statistically significant, the results
could be due to chance or treatment. Put another way, we don’t know any more than
we did before we subjected the results to statistical analysis.

TABLE 10.2
Common Errors in Discussing Null Results

STATEMENT FLAW

“The results were not significant. There-
fore, the independent variable had no
effect.”

“Not that I know of” is not the same as
proving “there isn’t any.”

“The treatment had an effect, even though
the results are not significant.”

“Not significant” means that you
failed to find an effect. Therefore, the
statement could be translated as, “I
didn’t find an effect for the treatment,
but I really did.”
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effect, even though the difference is not significant.” Reread the previous
quote because you’re sure to see it again: It’s one of the most common con-
tradictory statements that researchers make. People making this statement
are really saying, “The difference is due to the treatment, even though I’ve
found no evidence that the difference isn’t simply due to chance.”

Null Results Do Not Prove the Null Hypothesis: “I Didn’t Find It” Doesn’t
Mean It Doesn’t Exist
As we have just discussed, some people act like null results secretly prove the
experimental hypothesis. On the other hand, some people make the opposite
mistake: They incorrectly assume that null results prove the null hypothesis.
That is, they falsely conclude that null results prove that the treatment had
no effect. Some individuals make this mistake because they think the term
“null results” implies that the results prove the null hypothesis. Those people
would be better off thinking of null results as “no results” than to think that
null results support the null hypothesis.

Thinking that nonsignificant results support the null hypothesis is a mis-
take because it overlooks the difficulty of conclusively proving that a treat-
ment has an effect. People should realize that not finding something is not
the same as proving that the thing does not exist. After all, people often fail
to find things that clearly exist, such as books that are in the library, items
that are in the grocery store, and keys that are on the table in front of them.

Even in highly systematic investigations, failing to find something doesn’t
mean the thing does not exist. For example, in 70% of all murder investiga-
tions, investigators do not find a single identifiable print at the murder
scene—not even the victim’s. Thus, the failure to find the suspect’s fingerprints
at the scene is hardly proof that the suspect is innocent. For essentially the same
reasons, the failure to find an effect is not proof that there is no effect.

Summary of the “Ideal” Simple Experiment
Thus far, we have said that the simple experiment gives you an easy way to
determine whether a factor causes an effect. If you can randomly assign parti-
cipants to either a treatment or no-treatment group, all you have to do is find
out whether your results are statistically significant. If your results are statisti-
cally significant, your treatment probably had an effect. No method allows
you to account for the effects of nontreatment variables with as little effort
as random assignment.

ERRORS IN DETERMINING WHETHER RESULTS ARE
STATISTICALLY SIGNIFICANT

There is one drawback to random assignment: Differences between groups
may be due to chance rather than to the treatment. Admittedly, statistical
tests—by allowing you to predict the extent to which chance may cause the
groups to differ—minimize this drawback. Statistical tests, however, do not
allow you to perfectly predict chance all of the time. Therefore, you may err
by either underestimating or overestimating the extent to which chance is
causing your groups to differ (see Table 10.3).
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Type 1 Errors: “Crying Wolf”
If you underestimate the role of chance, you may make a Type 1 error: mis-
taking a chance difference for a real difference. In the simple experiment, you
would make a Type 1 error if you mistook a chance difference between your
experimental and control groups for a treatment effect. More specifically,
you would make a Type 1 error if you declared that a difference between
your groups was statistically significant, when the treatment really didn’t
have an effect. In nonresearch settings, examples of Type 1 errors include:

● a jury convicting an innocent person because they mistake a series of
coincidences as evidence of guilt

● a person responding to a false alarm, such as thinking that the phone is
ringing when it’s not or thinking that an alarm is going off when it’s not

● a physician making a “false positive” medical diagnosis, such as telling a
woman she is pregnant when she isn’t

Reducing the Risk of a Type 1 Error
What can you do about Type 1 errors? There is only one thing you can do:
You can decide what risk of a Type 1 error you are willing to take. Usually,
experimenters decide that they are going to take less than a 5% risk of mak-
ing a Type 1 error. In other words, they say their results must be significant
at the .05 level (p < .05) before they declare that their results are significant.
They are comfortable with the odds of their making a Type 1 error being less
than 5 in 100. But why take even that risk? Why not take less than a 1%
risk?

Accepting the Risk of a Type 1 Error
To understand why not, imagine you are betting with someone who is flip-
ping a coin. For all 10 flips, she calls “heads.” She wins most of the 10 flips.

Let’s suppose that you will refuse to pay up if you have statistical proof
that she is cheating. However, you do not want to make the Type 1 error of
attributing her results to cheating (using a biased coin) when the results are
due only to luck. How many of the 10 flips does she have to win before you
“prove” that she is cheating?

TABLE 10.3
Possible Outcomes of Statistical Significance Decision

REAL STATE OF AFFAIRS

STATISTICAL SIGNIFI-
CANCE DECISION

Treatment has
an effect

Treatment does
not have an effect

Significant: Reject the null
hypothesis

Correct decision Type 1 error

Not significant: Do not reject
the null hypothesis

Type 2 error Correct decision
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To help you answer this question, we looked up the odds of getting 8, 9,
or 10 heads in 10 flips of a fair coin.5 Those odds are as follows:

EVENT

PROBABILITY

EXPRESSED IN

PERCENTAGES

PROBABILITY

EXPRESSED IN

DECIMAL FORM

Chances of 8 or more heads 5.47% .0547

Chances of 9 or more heads 1.08% .0108

Chances of 10 heads 0.1% .001

From these odds, you can see that you can’t have complete, absolute
proof that she is cheating. Thus, if you insist on taking 0% risk of falsely
accusing her (you want to be absolutely 100% sure), you would not call her
a cheat—even if she got 10 heads in a row. As you can see from the odds we
listed, it is very unlikely (.1% chance), but still possible, that she could get 10
heads in a row, purely by chance alone. Consequently, if you are going to
accuse her of cheating, you are going to have to take some risk of making a
false accusation.

If you were willing to take more than a 0% risk but were unwilling to
take even a 1% risk of falsely accusing her (you wanted to be more than
99% sure), you would call her a cheat if all 10 flips turned up heads—but
not if 9 of the flips were heads. If you were willing to take a 2% risk of
falsely accusing her (you wanted to be 98% sure), you would call her a
cheat if either 9 or 10 of the flips turned up heads. Finally, if you were willing
to take a 6% risk of falsely accusing her (you would settle for being 94%
sure), you could refuse to pay up if she got 8 or more heads.

This betting example gives you a clue about what happens when you set
your risk of making a Type 1 error. When you determine your risk of making
a Type 1 error, you are indirectly determining how much the groups must dif-
fer before you will declare that difference statistically significant. If you are
willing to take a relatively large risk of mistaking a difference that is due
only to chance for a treatment effect, you may declare a relatively small dif-
ference statistically significant. If, on the other hand, you are willing to take
only a tiny risk of mistakenly declaring a chance difference statistically signif-
icant, you must require that the difference between groups be relatively large
before you are willing to call it statistically significant. In other words, all
other things being equal, the larger the difference must be before you declare
it significant, the less likely it is that you will make a Type 1 error. To take an
extreme example of this principle, if you would not declare even the biggest
possible difference between your groups statistically significant, you would
never make a Type 1 error.

5You do not need to know how to calculate these percentages.
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Type 2 Errors: “Failing to Announce the Wolf”
The problem with not taking any risk of making a Type 1 error is that, if the
treatment did have an effect, you would be unable to detect it. In trying to be
very sure that a difference is due to treatment and not to chance, you may
make a Type 2 error: overlooking a genuine treatment effect because you
think the differences between conditions might be due to chance. Examples
of Type 2 errors in nonresearch situations include:

● a jury letting a criminal go free because they wanted to be sure beyond
any doubt and they realized that it was possible that the evidence against
the defendant was due to numerous, unlikely coincidences

● a person failing to hear the phone ring
● a radar detector failing to detect a speed trap
● a physician making a “false negative” medical diagnosis, such as failing

to detect that a woman was pregnant

In short, whereas Type 1 errors are errors of commission (yelling “fire”
when there is no fire), Type 2 errors are errors of omission (failing to yell
“fire” when there is a fire). In trying to avoid Type 1 errors, you may
increase your risk of making Type 2 errors. In the extreme case, if you were
never willing to risk making a Type 1 error, you would never detect real
treatment effects. But because you want to detect real treatment effects, you
will take a risk of making a Type 1 error—and you will take steps to improve
your study’s power: the ability to find real differences and declare those dif-
ferences statistically significant; or, put another way, the ability to avoid mak-
ing Type 2 errors.6

The Need to Prevent Type 2 Errors: Why You Want the Power
to Find Significant Differences
You can have power without increasing your risk of making a Type 1 error.
Unfortunately, many people don’t do what it takes to have power.

If you don’t do what it takes to have power, your study may be doomed:
Even if your treatment has an effect, you will fail to find that effect statisti-
cally significant. In a way, looking for a significant difference between your
groups with an underpowered experiment is like looking for differences
between cells with an underpowered microscope.

As you might imagine, conducting a low-powered experiment often leads
to frustration over not finding anything. Beginning researchers frequently
frustrate themselves by conducting such low-powered experiments. (We

6In a sense, power (defined as 1.00 − the probability of making a Type 2 error) and Type 2
errors are opposites. Power refers to the chances (given that the treatment really does have a cer-
tain effect) of finding a significant treatment effect, whereas the probability of a Type 2 error
refers to the chances (given that the treatment really does have a certain effect) of failing to find
a significant treatment effect. If you plug numbers into the formula “1.00 − power ¼ chances of
making a Type 2 error,” you can see that power and Type 2 errors are inversely related. For
example, if power is 1, you have a 0% chance of making a Type 2 error (because 1.00 − 1.00 ¼
0%). Conversely, if the treatment has an effect and power is 0, you have a 100% chance of
making a Type 2 error (because 1.00 − 0 ¼ 100%). Often, power is around .40, meaning that, if
the treatment has an effect, the researcher has a 40% (.40) chance of finding that effect and a
60% chance of not finding that effect (because 1.00 − .40 ¼ 60%).
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know we did.) Why do beginning researchers often fail to design sufficiently
powerful experiments?

STATISTICS AND THE DESIGN OF THE SIMPLE EXPERIMENT
One reason inexperienced researchers fail to design powerful experiments is
they simply do not think about power—a “sin” that many professional
researchers also commit (Cohen, 1990). But even when novice researchers do
think about power, they often think that it is a statistical concept and there-
fore has nothing to do with design of experiments. Admittedly, power is a
statistical concept. However, statistical concepts should influence the design
of research. Just as a bridge builder should consider engineering principles
when designing a bridge, a researcher should consider statistical principles
when designing a study. If you consider statistical power when designing
your study, your study should have enough power to find the differences
that you are looking for—if those differences really exist.

Power and the Design of the Simple Experiment
To have enough power, you must reduce the risk of chance differences hiding
the treatment effect. As you can see from Figure 10.2, two ways to stop ran-
dom error from overwhelming your treatment effect are (1) reduce the effects
of random error and (2) increase the size of the treatment effect.

Reduce the Effect of Random Error
One of the most obvious ways to reduce the effects of random error is to
reduce the potential sources of random error. The major sources of random
error are random differences between testing situations, random measurement
error, random differences between participants, and sloppy coding of data.

Lost treatment effect

Jungle of
random error

Build up treatment effectCut down on random error

FIGURE 10.2 Cutting Down on Random Error and Building Up the Treat-
ment Effect: Two Ways to Avoid Losing Your Treatment Effect in a “Jun-
gle” of Random Error
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Standardize Procedures and Use Reliable Measures. Because a major source of
random error is random variation in the testing situation, you can reduce ran-
dom error by standardizing your experiment. Standardization consists of
keeping the testing environment and the experimental procedures as constant
as possible. Thus, to improve power, you might want the noise level, illumi-
nation level, temperature, and other conditions of testing to be the same for
each participant. Furthermore, you would want to treat all your experimental
group participants identically and treat all your control group participants
identically. In addition to reducing random error by standardizing proce-
dures, you should also reduce random error by using a reliable dependent
measure (for more about how reliable measures boost power, see Chapter 6).

The desire for both reliable measures and strict standardization makes
some psychologists love both instruments and the laboratory. Under the lab’s
carefully regulated conditions, experimenters can create powerful and sensi-
tive experiments.

Other experimenters, however, reject the laboratory setting in favor of
real-world settings. By using real-world settings, they can more easily make a
case for their study’s external validity. The price they pay for leaving the lab-
oratory is that they are no longer able to keep many nontreatment variables
(temperature, distractions, noise level, etc.) constant. These variables, free to
vary wildly, create a jungle of random error that may hide the treatment’s
effect.

Because of the large variability in real-world settings and the difficulties
of using sensitive measures in the field, even die-hard field experimenters
may first look for a treatment’s effect in the lab. Only after they have found
that the treatment has an effect in the lab will they try to detect the treat-
ment’s effect in the field.

Use a Homogeneous Group of Participants. Like differences between testing
sessions, differences between participants can hide treatment effects. Even if
the treatment effect causes a large difference between your groups, you may
overlook that effect, mistakenly believing that the difference between your
groups is due to your participants being years apart in age and worlds apart
in terms of their experiences.

To decrease the chances that between-subject differences will mask the
treatment’s effect, choose participants who are similar to one another. For
instance, select participants who are the same gender, same age, and have the
same IQ—or, study rats instead of humans. With rats, you can select partici-
pants that have grown up in the same environment, have similar genes, and
even have the same birthday. By studying homogeneous participants under
standardized situations, rat researchers can detect very subtle treatment
effects.

Code Data Carefully. Obviously, sloppy coding of the data can sabotage the
most sensitively designed study. So, why do we mention this obvious fact?

We mention it because careful coding is a cheap way to increase power.
If you increase power by using nonhuman animals as participants, you may
lose the ability to generalize to humans. If you increase power by using a lab
experiment rather than a field experiment, you may lose some of your ability
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to generalize to real-world settings. But careful coding costs you nothing—
except for a little time spent rechecking the coding of your data.

Let Random Error Balance Out. Thus far, we have talked about reducing the
effects of random error by reducing the amount of random error. But you
can reduce the effects of random error on your data without reducing the
amount of random error in your data.

The key is to give random error more chances to balance out. To remind
yourself that chance does balance out in the long run, imagine flipping a fair
coin. If you flipped it six times, you might get five tails and one head—five
times as many tails as heads. However, if you flipped it 1,000 times, you
would end up with almost as many heads as tails.

Similarly, if you use five participants in each group, your groups probably
won’t be equivalent before the experiment begins. Thus, even if you found
large differences between the groups at the end of the study, you might have
to say that the differences could be due to chance alone. However, if you use
60 participants in each group, your groups should be equivalent before the
study begins. Consequently, a treatment effect that would be undetected if you
used 5 participants per group might be statistically significant if you used 60
participants per group. In short, to take advantage of the fact that random
error balances out, boost your study’s power by studying more participants.

Create Larger Effects: Bigger Effects Are Easier to See
Until now, we have talked about increasing power by making our experiment
more sensitive to small differences. Specifically, we have talked about two
ways of preventing the “noise” caused by random error from making us
unable to “hear” the treatment effect: (1) reducing the amount of random
error and (2) giving random error a chance to balance out. However, we
have left out one obvious way to increase our experiment’s ability to detect
the effect: making the effect louder (bigger) and thus easier to hear.

As you might imagine, bigger effects are easier to find. But how do we
create bigger effects? Your best bet for increasing the size of the effect is to
give the control group participants a very low level of the independent vari-
able while giving the experimental group a very high level of the independent
variable. Hence, to have adequate power in the lighting experiment, rather
than giving the control group 1 hour of full-spectrum light and the experi-
mental group 2 hours, you might give the control group no full-spectrum
light and the experimental group 4 hours of full-spectrum light.

To see how researchers can maximize the chances of finding an effect by
giving the experimental and control groups widely different levels of treat-
ment, let’s consider an experiment by T. D. Wilson and Schooler (1991). Wil-
son and Schooler wanted to determine whether thinking about the advantages
and disadvantages of a choice could hurt one’s ability to make the right
choice. In one experiment, they had participants rate their preference for the
taste of several fruit-flavored jams. Half the participants rated their prefer-
ences after completing a “filler” questionnaire asking them to list reasons
why they chose their major. The other half rated their preferences after com-
pleting a questionnaire asking them to “analyze why you feel the way you do
about each jam in order to prepare yourself for your evaluations.” As Wilson
and Schooler predicted, the participants who thought about why they liked
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the jam made less accurate ratings (ratings that differed more from experts’
ratings) than those who did not think about why they liked the jam.

Although the finding that one can think too much about a choice is
intriguing, we want to emphasize another aspect of Wilson and Schooler’s
study: the difference between the amount of time experimental participants
reflected on jams versus the amount of time that control participants reflected
on jams. Note that the researchers did not ask the control group to do any
reflection whatsoever about the jams. To reiterate, Wilson and Schooler did
not have the control group do a moderate amount of reflection and the
experimental group do slightly more reflection. If they had, Wilson and
Schooler might have failed to find a statistically significant effect.

Conclusions About How Statistical Considerations
Impact Design Decisions
By now, you can probably appreciate why R. A. Fisher said, “To consult a
statistician after an experiment is finished is often merely to ask him to con-
duct a post mortem examination. He can perhaps say what the experiment
died of.” The reason you should think about statistics before you do an
experiment is that statistical considerations influence virtually every aspect of
the design process (see Table 10.4). For example, statistical considerations
even dictate what kind of hypothesis you can test. Because you cannot accept
the null hypothesis, the only hypotheses that you can hope to support are
hypotheses that the groups will differ. Therefore, you cannot do a simple
experiment to prove that two treatments have the same effect or that a certain
treatment will be just as ineffective as no treatment.

Not only do statistical considerations dictate what types of hypotheses you
can have, but they also mandate how you should assign your participants.

TABLE 10.4
Implications of Statistics for the Simple Experiment

STATISTICAL CONCERN/REQUIREMENT IMPLICATIONS FOR DESIGNING THE SIMPLE EXPERIMENT

Observations must be independent. You must use independent random assignment and, ideally, you
will test participants individually.

Groups must differ for only two
reasons—random differences and the
independent variable.

You must randomly assign participants to groups.

It is impossible to accept the null
hypothesis.

You cannot use the experiment to prove that a treatment has no
effect or to prove that two treatments have identical effects.

You need enough power to find a
significant effect.

You should

1. Standardize procedures.
2. Use sensitive, reliable dependent variables.
3. Code data carefully.
4. Use homogeneous participants.
5. Use many participants.
6. Use extreme levels of the independent variable.
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Specifically, if you do not assign your participants to groups using independent
random assignment, you do not have a valid experiment.

Statistical considerations also dictate how you should treat your partici-
pants. You will not have a valid experiment if you let participants influence
one another’s responses or if you do anything else that would violate the
statistical requirement that individual participants’ responses must be
independent.

Even when statistics are not dictating what you must do, they are sug-
gesting what you should do. To avoid making Type 2 errors, you should do
the following:

1. Standardize your procedures.
2. Use sensitive and reliable dependent measures.
3. Carefully code your data.
4. Use homogeneous participants.
5. Use many participants.
6. Use extreme levels of the independent variable.

NONSTATISTICAL CONSIDERATIONS AND THE DESIGN
OF THE SIMPLE EXPERIMENT

Statistical issues are not the only issues that you should consider when design-
ing a simple experiment. If you considered only statistical power, you could
harm your participants, as well as your experiment’s external and construct
validity. Therefore, in addition to statistical issues such as power, you must
also consider external validity, construct validity, and ethical issues.

External Validity Versus Power
Many of the things you can do to improve your study’s power may hurt your
study’s external validity. For example, using a laboratory setting, homoge-
neous participants, and extreme levels of the independent variable all improve
power, but all may reduce external validity.

By using a lab experiment to stop unwanted variables from varying, you
may have more power to find an effect. However, by preventing unwanted
variables from varying, you may hurt your ability to generalize your results
to real life—where these unwanted variables do vary.

By using a homogeneous set of participants (18-year-old, White males
with IQs between 120 and 125), you reduce between-subject differences,
thereby enhancing your ability to find treatment effects. However, because
you used such a restricted sample, you would not be as able to generalize
your results to the average American as a researcher whose participants were
a random sample of Americans.

Finally, by using extreme levels of the independent variable, you may be
able to find a significant effect for your independent variable. If you use
extreme levels, though, you may be like the person who used a sledgehammer
to determine the effects of hammers—you don’t know the effect of realistic,
naturally occurring levels of the treatment variable.
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Construct Validity Versus Power
Your efforts to improve power may hurt not only your experiment’s external
validity but also its construct validity. For example, suppose you had two
choices for your measure. The first is a 100-point rating scale that is sensitive
and reliable. However, the measure is vulnerable to subject bias: If partici-
pants guess your hypothesis, they can easily circle the rating they think you
want them to. The second is a measure that is not very reliable or sensitive,
but it is a measure that participants couldn’t easily fake. If power was your
only concern, you would pick the first measure despite its vulnerability to
subject bias. With it, you are more likely to find a statistically significant
effect. However, because construct validity should be an important concern,
many researchers would suggest that you pick the second measure.

If you sought only statistical power, you might also compromise the con-
struct validity of your independent variable manipulation. For instance, to
maximize your chances of getting a significant effect for full-spectrum light-
ing, you would give the experimental group full-spectrum lighting and make
the control group an empty control group: a group that gets no kind of treat-
ment. Compared to the empty control group, the treatment group

1. receives a gift (the lights) from the experimenter
2. gets more interaction with, and attention from, the experimenter (as the

experimenter checks participants to make sure they are using the lights)
3. adopts more of a routine than the controls (using the lights every morn-

ing from 6:00 a.m. to 8:00 a.m.)
4. has higher expectations of getting better (because they have more of a

sense of being helped) than the controls

As a result of all these differences, you would have a good chance of find-
ing a significant difference between the two groups. Unfortunately, if you find
a significant effect, it’s hard to say that the effect is due to the full-spectrum
lighting and not due to any of these other side effects of your manipulation.7

To minimize these side effects of the treatment manipulation, you might
give your control group a placebo treatment: a substance or treatment that
has no effect. Thus, rather than using a no-light condition, you might expose
the control group to light from an ordinary 75-watt incandescent light bulb.
You would further reduce the chances of bias if you made both the experi-
menters and participants blind (masked): unaware of which kind of treatment
the participant was getting. If you make the researcher who interacts with the
participants blind, that researcher will not bias the results in favor of the
experimental hypothesis. Similarly, by making participants blind, you make
it less likely that participants will bias the results in favor of the hypothesis.

In short, the use of placebos, the use of single blinds (in which either the
participant or the experimenter is blind), and the use of double blinds (in
which both the participant and the experimenter are blind) all may reduce
the chances that you will obtain a significant effect. However, if you use

7The problem of using an empty control group is even more apparent in research on the effect
of surgery. For example, if a researcher finds that rats receiving brain surgery run a maze slower
than a group of rats not receiving an operation, the researcher should not conclude that the sur-
gery’s effect was due to removing a part of the brain that plays a role in maze-running.
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these procedures and still find a significant effect, you can be relatively confi-
dent that the treatment itself—rather than some side effect of the treatment
manipulation—is causing the effect.

You have seen that what is good for power may harm construct validity,
and vice versa. But what trade-offs should you make? To make that decision,
you might find it helpful to see what trade-offs professional experimenters
make between power and construct validity. Do experienced experimenters
use empty control groups to get significant effects? Or, do they avoid empty
control groups to improve their construct validity? Do they avoid blind pro-
cedures to improve power? Or, do they use blind procedures to improve con-
struct validity?

Often, experimenters decide to sacrifice power for construct validity. For
example, in their jam experiment, Wilson and Schooler did not have an
empty control group. In other words, their control group did not simply sit
around doing nothing while the experimental group filled out the question-
naire analyzing reasons for liking a jam. Instead, the control group also com-
pleted a questionnaire. The questionnaire was a “filler questionnaire” about
their reasons for choosing a major. If Wilson and Schooler had used an
empty control group, critics could have argued that it was the act of filling
out a questionnaire—not the act of reflection—that caused the treatment
group to make less accurate ratings than the controls. For example, critics
could have argued that the controls’ memory for the jams was fresher because
they were not distracted by the task of filling out a questionnaire.

To prevent critics from arguing that the experimenters influenced partici-
pants’ ratings, Wilson and Schooler made the experimenters blind. To imple-
ment the blind technique, Wilson and Schooler employed two experimenters.
The first experimenter had participants (a) taste the jams and (b) fill out
either the control group (filler) questionnaire or the experimental group (rea-
sons) questionnaire. After introducing the participants to Experimenter 2,
Experimenter 1 left the room. Then, Experimenter 2—who was unaware
of (blind to) whether the participants had filled out the reasons or the filler
questionnaire—had participants rate the quality of the jams.

Ethics Versus Power
As you have seen, increasing a study’s power may conflict with both external
and construct validity. In addition, increasing power may conflict with ethical
considerations. For example, suppose you want to use extreme levels of the
independent variable (food deprivation) to ensure large differences in the
motivation of your animals. In that case, you need to weigh the benefits of
having a powerful manipulation against ethical concerns, such as the comfort
and health of your subjects (for more about ethical concerns, see Chapter 2
and Appendix D).

Ethical concerns determine not only how you treat the experimental
group but also how you treat the control group. Just as it might be unethical
to administer a potentially harmful stimulus to your experimental partici-
pants, it also might be unethical to withhold a potentially helpful treatment
from your control participants. For instance, it might be ethically question-
able to withhold a possible cure for depression from your controls. Therefore,
rather than maximizing power by completely depriving the control group of a
treatment, ethical concerns may dictate that you give the control group a
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moderate dose of the treatment. (For a summary of the conflicts between
power and other goals, see Table 10.5.)

ANALYZING DATA FROM THE SIMPLE EXPERIMENT:
BASIC LOGIC

After carefully weighing both statistical and nonstatistical considerations, you
should be able to design a simple experiment that would test your experimen-
tal hypothesis in an ethical and internally valid manner. If, after consulting
with your professor, you conduct that experiment, you will have data to
analyze.

To understand how you are going to analyze your data, remember why
you did the simple experiment. You did it to find out whether the treatment
would have an effect on a unique population—all the participants who took
part in your experiment. More specifically, you wanted to know the answer
to the hypothetical question: “If I had put all my participants in the experi-
mental condition, would they have scored differently than if I had put all of
them in the control condition?” To answer this question, you need to know
the averages of two populations:

Average of Population #1—what the average score on the dependent
measure would have been if all your participants had been in the control
group.

TABLE 10.5
Conflicts Between Power and Other Research Goals

ACTION TO HELP POWER HOW ACTION MIGHT HARM OTHER GOALS

Use a homogeneous group of participants to reduce
random error due to participants.

May hurt your ability to generalize to other groups.

Test participants under controlled laboratory condi-
tions to reduce the effects of extraneous variables.

1. May hurt your ability to generalize to real-life
situations where extraneous variables are present.

2. Artificiality may hurt construct validity. If the
setting is so artificial that participants are con-
stantly aware that what they are doing is not real
and just an experiment, they may act to please the
experimenter rather than expressing their true
reactions to the treatment.

Use artificially high or low levels of the independent
variables to get big differences between groups.

1. You may be unable to generalize to realistic levels
of the independent variable.

2. May be unethical.

Use an empty control group to maximize the chance
of getting a significant difference between the groups.

Construct validity is threatened because the significant
difference may be due to the participants’ expectations
rather than to the independent variable.

Test many participants to balance out the effects of
random error.

Expensive and time-consuming.
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Average of Population #2—what the average score on the dependent
measure would have been if all your participants had been in the experi-
mental group.

Unfortunately, you cannot measure both of these populations. If you put
all your participants in the control condition, you won’t know how they
would have scored in the experimental condition. If, on the other hand, you
put all your participants in the experimental condition, you won’t know how
they would have scored in the control condition.

Estimating What You Want to Know: Your Means
Are Sample Means
You can’t directly get the population averages you want, so you do the next
best thing—you estimate them. You can estimate them because, thanks to
independent random assignment, you split all your participants (your popula-
tion of participants) into two random samples. That is, you started the exper-
iment with two random samples from your original population of
participants. These two “chips off the same block” were the control group
and the experimental group (see Figure 10.3).

The average score of the random sample of your participants who
received the treatment (the experimental group) is an estimate of what the
average score would have been if all your participants received the treatment.
The average score of the random sample of participants who received no
treatment (the control group) is an estimate of what the average score would
have been if all of your participants had been in the control condition.

Independent
random sample #1
(the control group)

Independent random
sample #2 (the 

experimental group)

Population
(individuals

who participate
in the study)

FIGURE 10.3 The Control Group and the Experimental Group Are Two
Samples Drawn From the Same Population
Problem: If the average score for the experimental group is different from the average
score for the control group, is this difference due to the two groups receiving different
treatments? To random error related to sampling? (Two random samples from the same
population may differ.)
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Calculating Sample Means: Getting Your Estimates
Even though only half your participants were in the experimental group, you
will assume that the experimental group is a fair sample of your entire popu-
lation of participants. Thus, the experimental group’s average score should be
a good estimate of what the average score would have been if all your partici-
pants had been in the experimental group. Similarly, you will assume that the
control group’s average score is a good estimate of what the average score
would have been if all your participants had been in the control group.
Therefore, the first step in analyzing your data will be to calculate the average
score for each group. Usually, the average you will calculate is the mean: the
result of adding up all the scores and then dividing by the number of scores
(e.g., the mean of 3 and 5 is 4 because 3 þ 5 ¼ 8 and 8/2 ¼ 4).

Comparing Sample Means: How to Compare Two Imperfect Estimates
Once you have your two sample means, you can compare them. Before talk-
ing about how to compare them, let’s understand why we are comparing the
means. We are comparing the sample means because we know that, before
we administered the treatment, both groups represented a random sample of
the population consisting of every participant who took part in the study.
Thus, at the end of the experiment, if the treatment had no effect, the control
and experimental groups would both still be random samples from that
population.

As you know, two random samples from the same population will proba-
bly be similar to each other. For instance, two random samples of the entire
population of New York City should be similar to each other, two random
samples from the entire population of students at your school should be simi-
lar to each other, and two random samples from the entire group of partici-
pants who took part in your study should be similar to each other.
Consequently, if the treatment has no effect, at the end of the experiment,
the experimental and control groups should be similar to each other.

Why We Must Do More Than Subtract the Means From Each Other
Because two random samples from the same population should be similar to
each other, you might think all we need to do is subtract the control group
mean from the experimental group mean to find the effect. But such is not
the case: Even if the treatment has no effect, the means for the control group
and experimental group will rarely be identical. To illustrate, suppose that
Dr. N. Ept made a serious mistake while trying to do a double-blind study.
Specifically, Dr. N. Ept succeeded in not letting his assistants know whether
the participants were getting the real treatment or a placebo, but failed in
that all the participants got the placebo. In other words, both groups ended
up being random samples of the same population—participants who did not
get the treatment. Even in such a case, the two groups will probably have dif-
ferent means.

How Random Error Affects Data From the Simple Experiment
Dr. N. Ept’s study illustrates an important point: Even if groups are random
samples of the same population, they may still differ because of random
error. You are probably aware of random error from reading about public
opinion polls that admit to a certain degree of sampling error.
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To help you see how random error could affect the results of a simple
experiment, let’s simulate conducting a small-scale experiment. Be warned
that this simulation won’t show us what would typically happen in an experi-
ment. Instead, this simulation is rigged to demonstrate the worst random
error can do. Nevertheless, the simulation does demonstrate a fundamental
truth: Random error alone can create groups that differ substantially from
each other.

To conduct this simulation, assume that you have the following four par-
ticipants, who would tend to score as follows:

Abby

John

Mary

Paul

10

20

70

40

Now use Box 10.1 to randomly assign each participant to either the
experimental or control group. Then, get an average for each group. Repeat
this process several times. If you do this, you will simulate what happens
when you do an experiment and the treatment has no effect.

As doing this simulation will reveal, which participants end up in which
group varies greatly depending on where on the random numbers table you
happen to start—and there are many different places you could start. Not all
of these possible ways of splitting participants into control and experimental
groups are going to produce identical groups. Indeed, you may even find
that random assignment sometimes results in having all men in the experi-
mental group and all women in the control group.

In summary, the control and experimental groups start off as random
samples of your participants. At the start of the study, these groups are not
identical. Instead, they will probably merely be similar. Occasionally, how-
ever, they may start off being fairly different. If they start off as different,
then they may score differently on the dependent measure task at the end of
the experiment—even when the treatment has no effect. Thus, even if the
treatment had no effect, random error might make the experimental group
score differently (either higher or lower) than the control group.

Because random error can affect the results of a study, you need to
understand random error to understand the results of a study. More specifi-
cally, to interpret the results of a simple experiment, you need to understand
two important statistical principles:

1. Random error affects individual scores.
2. Random error may also cause group means to differ.

Fortunately, as you will soon see, you already intuitively understand both of
these principles.

Random Error Makes Scores Within a Group Differ
To see that you intuitively grasp the first principle (random error affects indi-
vidual scores), consider the following scores:
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CONTROL EXPERIMENTAL

70 80

70 80

70 80

Is there something strange about these data? Most students we show
these data to realize that these data are faked. Students are suspicious of
these data because scores within each group do not vary: There are no
within-groups differences in this experiment. These data make it look like the
only thing that affects scores is the treatment. With real data, however, scores
would be affected by nontreatment factors. Consequently, the scores within
each group would vary. That is, there would be what statisticians call
within-groups variability.

When asked to be more specific about why they think the data are faked,
students point out that there are at least two reasons why scores within each
group should differ. First, participants within each group differ from each
other, so their scores would reflect those differences. That is, because partici-
pants in the control group aren’t all clones of each other, their scores won’t
all be the same. Likewise, because participants in the experimental group
aren’t all identical, their scores shouldn’t all be identical.

Second, even if a group’s participants were all identical, random measure-
ment errors alone would prevent participants from getting identical scores.
For instance, even if the control group participants were clones, participants’
scores would probably vary due to the measure’s less-than-perfect reliability.
Similarly, even if all the experimental group participants were identical, their
scores would not be: Many random factors—from random variations in how
the experimenter treated each participant to random errors in coding of the
data—would inevitably cause scores within the experimental group to differ.

In summary, most students have an intuitive understanding that there will
be differences within each group (within-groups variability), and these differ-
ences are due to factors completely unrelated to the treatment. To be
more specific, these differences are due to random error caused by such
factors as individual differences, random measurement error, and imperfect
standardization.

Random Error Can Make Group Means Differ
To see whether you intuitively grasp the second principle (random error may
cause group means to differ from each other), consider the following data:

CONTROL EXPERIMENTAL

70 70

80 80

70 100
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Do you think the experimental group is scoring significantly higher than
the control group? Most students wisely say “no.” They realize that if the
participant who scored “100” had been randomly assigned to the control
group rather than the experimental group, the results may have been
completely different. Thus, even though the group means differ, the difference
may not be due to the treatment. Instead, the difference between these two
group means could be entirely due to random error.

As you have just seen, even if the treatment has no effect, random error
may cause the experimental group mean to differ from the control group
mean. Therefore, we cannot say that there is a treatment effect just because
there is a difference between the experimental group’s average score and the
control group’s. Instead, if we are going to find evidence for a treatment
effect, we need a difference between our groups that is “too big” to be due
to random error alone.

When Is a Difference Too Big to Be Due to Random Error?
What will help us determine whether the difference between group means is
too big to be due to random error alone? In other words, what will help us
determine that the treatment had a statistically significant (reliable) effect?

To answer the question of how we determine whether the treatment had
a statistically significant effect, we’ll look at three sets of experiments. Let’s
begin with the two experiments tabled below. Which of the following two
experiments do you think is more likely to reveal a significant treatment
effect?

EXPERIMENT A EXPERIMENT B

Control Experimental Control Experimental

70 70 70 80

71 73 71 81

72 72 72 82

Bigger Differences Are Less Likely to Be Due to Chance Alone
If you picked Experiment B, you’re right! All other things being equal, bigger
differences are more likely to be “too big to be due to chance alone” than
smaller differences. Therefore, bigger differences are more likely to reflect a
treatment effect. Smaller differences, on the other hand, provide less evidence
of a treatment effect.

To appreciate the fact that small differences provide less evidence of a
treatment effect, let’s consider an extreme case. Specifically, let’s think about
the case where the difference between groups is as small as possible: zero. In
that case, the control and experimental groups would have identical means.
If the treatment group’s mean is the same as the no-treatment group’s mean,
there’s no evidence of a treatment effect.
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“Too Big to Be Due to Chance” Partly Depends on How Big “Chance” Is
You have seen that the difference between means is one factor that affects
whether a result is statistically significant. All other things being equal, bigger
differences are more likely to be significant.

The size of the difference isn’t the only factor that determines whether a
result is too big to be due to chance. To illustrate this fact, compare the two
experiments below. Then, ask yourself, is Experiment A or Experiment B
more likely to reveal a significant treatment effect? That is, in which experi-
ment is the difference more likely to be too big to be due to chance?

Differences Within Groups Tell You How Big Chance Is
In both experiments, the difference between the experimental and control
group mean is 10. Therefore, you can’t tell which difference is more likely to
be too big to be due to chance just by seeing which experiment has a bigger
difference between group means. Instead, to make the right choice, you have
to figure out the answer to this question: “In which experiment is chance
alone a less likely explanation for the 10-point difference?”

To help you answer this question, we’ll give you a hint. The key to
answering this question correctly is to look at the extent to which scores
vary within each group. The more variability within a group, the more ran-
dom error is influencing scores. All other things being equal, the more ran-
dom error makes individual scores within a group differ from one another
(i.e., the bigger the within-groups variability), the more random error will
tend to make group means differ from each other.

Now that you’ve had a hint, which experiment did you pick as being
more likely to be significant? If you picked Experiment A, you’re correct!

If you were asked why you picked A instead of B, you might say some-
thing like the following: “In Experiment B, the experimental group may be
scoring higher than the control group merely because the participant who
scored a 90 randomly ended up in the experimental group rather than in the
control group. Consequently, in Experiment B, the difference between the
groups could easily be due to random error.”

Such an explanation is accurate, but too modest. Let’s list the four steps
of your reasoning:

1. You realized that there was more variability within each group in Exper-
iment B than in Experiment A. That is, in Experiment B relative to
Experiment A, (1) control group scores were further from the control
group mean, and (2) experimental group scores were further from the
experimental group mean.

EXPERIMENT A EXPERIMENT B

Control Experimental Control Experimental

68 78 70 70

70 80 80 80

72 82 60 90
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2. You recognized that within-groups variability could not be due to the
treatment. You realized that the differences among participants’ scores
within the control group could not be due to the treatment because none
of those participants received the treatment. You also realized that the
differences among scores within the experimental group could not be due
to the treatment because every participant in the experimental group
received the same treatment. Therefore, when scores within a group vary,
these differences must be due to nontreatment factors such as individual
differences.

3. You realized that random assignment turned the variability due to non-
treatment factors (such as individual differences) into random error.
Thus, you realized that the greater within-groups variability in Experi-
ment B meant there was more random error in Experiment B than in
Experiment A.

4. You realized that the same random error that caused differences within
groups could cause differences between groups. That is, the more random
error is spreading apart scores within each group, the more random error
could be spreading the groups apart.

As you have seen, all other things being equal, the larger the differences
between your group means, the more likely the results are to be statistically sig-
nificant. As you have also seen, the smaller the differences among scores within
each of your groups (i.e., the less your individual scores are influenced by ran-
dom error), the more likely your results are to be statistically significant. Thus,
you have learned two of the three factors that determine whether a difference is
significant. To find out what the third factor is, compare Experiments A and B
below. Which is more likely to produce a significant result?

EXPERIMENT A EXPERIMENT B

Control Experimental Control Experimental

68 70 68 70

70 72 70 72

72 74 72 74

68 70

70 72

72 74

68 70

70 72

72 74
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In both experiments, the group means are equally far apart, so you can’t
look at group differences to figure out which experiment is more likely to be sig-
nificant. In both experiments, the random variability within each group is the
same; therefore, looking at within-groups variability will not help you figure out
which experiment is more likely to be significant. Which one do you choose?

With Larger Samples, Random Error Tends to Balance Out
If you chose Experiment B, you’re correct! Experiment B is the right choice
because it had more participants. In Experiment B, it’s less likely that random
error alone would cause the groups to differ by much because with large enough
samples, random error tends to balance out to zero. If you flip a coin 4 times,
you are likely to get either 75% heads or 75% tails. That is, random error
alone will probably cause a deviation of 25% or more from the true value of
50% heads. If, on the other hand, you flip a coin 4,000 times, you will almost
never get more than 51% heads or fewer than 49% heads. Because 4,000 flips
gives random error an opportunity to balance out, random error will almost
never cause a deviation of even 1% from the true value.

Just as having more coin flips allows more opportunities for the effects of
random error to balance out, having more participants allows more opportu-
nities for random error to balance out. Thus, Experiment B, by having more
participants, does a better job than Experiment A at allowing the effects of
random error to balance out. Consequently, it’s less likely that random error
alone would cause Experiment B’s groups to differ by a large amount. There-
fore, a difference between the control group mean and the treatment group
mean that would be big enough to be statistically significant (reliable) in
Experiment B might not be significant in Experiment A.

ANALYZING THE RESULTS OF THE SIMPLE EXPERIMENT:
THE t TEST

To determine whether a difference between two group means is significant,
researchers often use either ANOVA8 (analysis of variance, a technique we
will discuss in the next chapter) or the t test (to see how to do a t test, you
can use the formula in Table 10.6 or consult Appendix E).9 Although we
have not yet talked about the t test, you already understand the basic logic
behind it. The basic idea behind the t test is to see whether the difference
between two groups is larger than would be expected by random error
alone. Thus, you should not be surprised to find that the t ratio takes the

8The logic of ANOVA is similar to that of the t test. Indeed, for a simple experiment, the p
value for the ANOVA test will be exactly the same as the p value from the t test. Thus, if the t
test is statistically significant (p is less than .05), the ANOVA test will also be statistically signifi-
cant (p will be less than .05). In addition, for the simple experiment, you can get the value of the
ANOVA test statistic (called “F”) by squaring your t value. Thus, if t is 2, F will be 4. To learn
more about ANOVA, see the next chapter or see Appendix E.
9Although t test and ANOVA analyses are commonly used, they are criticized. The problem is
that both t tests and ANOVA tell us only whether a result is statistically significant—and, as we
discussed earlier, nonsignificant results don’t tell you anything and significant results don’t tell
you anything about the size of your effect. Therefore, many argue that, rather than using signifi-
cance tests, researchers should use confidence intervals. For more on the statistical significance
controversy, see Box 1 in Appendix E. For more about confidence intervals, see Appendix E.
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difference between the group means and divides that difference by an index of
the extent to which random error might cause the groups to differ. To be
more precise, t equals the difference between means divided by the standard
error of the difference between means (see Table 10.6).

Making Sense of the Results of a t Test
Once you have obtained your t value, you should calculate the degrees of
freedom for that t. To calculate degrees of freedom, subtract 2 from the num-
ber of participants. Thus, if you had 32 participants, you should have 30
degrees of freedom.

If you calculate t by hand, you need to compare your calculated t to
a value in a t table (you could use Table 1 in Appendix F) to determine
whether your t ratio is significant. To use the t table in Appendix F, you
need to know how many degrees of freedom (df) you have. For example,
if you had data from 32 participants, you would look at the t table in Appen-
dix F under the row labeled “30 df.” When comparing the t ratio you calcu-
lated to the value in the table, act like your t ratio is positive even if your

TABLE 10.6
Basic Idea of the t Test

GENERAL IDEA FORMULA

Top of t ratio: Obtain observed difference
(between two group means) t

Group 1 Mean Group 2 Mean

N
S 2

1

1 N
S2

2

2
Bottom of t ratio: Estimate difference
expected by chance (using the standard
error of the difference between means) where S1 ¼ standard deviation of Group 1, S2 ¼ standard

deviation of Group 2, N1 ¼ number of participants in
Group 1, and N2 ¼ number of participants in Group 2. The
standard deviation can be calculated by the formula

S ( X M )2/ N 1

where X stands for the individual scores, M is the sample
mean, and N is the number of scores.

Notes:

1. A large t value is likely to be statistically significant. That is, a large t (above 2.6) is likely to result in a
p value smaller than .05.

2. t will tend to be large when
a. The difference between experimental group mean and the control group mean is large.
b. The standard error of the difference is small. The standard error of the difference will tend to be small when

i. The standard deviations of the groups are small (scores in the control group tended to stay close to
the control group mean, scores in the experimental group tended to stay close to the experimental
group mean).

ii. The groups are large.
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t value is actually negative (e.g., treat −3 as if it were þ3). In other words,
take the absolute value of your t ratio.

If the absolute value of your t ratio is not bigger than the number in the
table, your results are not statistically significant at the p < .05 level. If, on
the other hand, the absolute value of your t ratio is bigger than the number
in the table, your results are statistically significant at the p < .05 level.

If you had a computer calculate t for you, make sure that the degrees of
freedom (df) for t are two fewer than the number of participants. For exam-
ple, if you thought you entered scores for 32 participants but your df ¼ 18,
you know there is a problem because the computer is acting as though you
entered only 20 scores.

If you had a computer calculate t for you, it might provide you with only
the t, the degrees of freedom, and the p value, as in the following case:

df ¼ 8;  t ¼ 4;   and  p < :0039

From the df of 8, you know that the t test was calculated based on scores
from 10 participants (10 − 2 ¼ 8). From the p value of less than .05, you
know the results are statistically significant at the .05 level. That is, you
know that if the null hypothesis were true, the chances of your obtaining dif-
ferences between groups that were as big as or bigger than what you
observed were less than 5 in 100.

Many computer programs will provide you with more information than
the df, t, and p values. Some will provide you with what might seem like an
overwhelming amount of information, such as the following:

1. df ¼ 8, t ¼ 4, and Sig. (2-tailed) ¼ .0039
2. Mean difference ¼ 4.00
3. 95% CI of this difference: 1.69 to 6.31
4. Group 1 mean ¼ 11.00; Group 1 SD ¼ 1.58; SEM ¼ 0.71
5. Group 2 mean ¼ 7.00; Group 2 SD ¼ 1.58; SEM ¼ 0.71

The first line tells you that the t test was calculated based on scores from
10 participants (10 − 2 ¼ 8, the df) and that the results were statistically sig-
nificant. The second line tells you that the Group 1 mean was 4 units bigger
than the Group 2 mean. The third line tells you that you can be 95% confi-
dent that the true difference between the means is between 1.69 units and
6.31 units. (To learn more about how the confidence interval [CI] was calcu-
lated, see Box 10.2.)

The fourth line describes Group 1’s data, and the fifth line describes
Group 2’s data. Both of those lines start by providing the group’s average
score (the mean) followed by a measure of how spread out the group’s scores
are: the standard deviation (SD). Be concerned if the SD of either group is
extremely high—a high SD may mean that you have entered a wrong value
(e.g., when entering responses from a 1-to-5 scale, you once typed a “55”
instead of a “5”). Both lines end with their group’s standard error of the mean
(SEM): an indicator of how far off the group’s sample mean is likely to be
from the actual population mean. If either group’s SEM is large, your experi-
ment has little power, and you probably failed to find a significant effect.

Suppose that your experiment was powerful enough to find an effect that
is statistically significant at the p < .05 level. In that case, because there’s less
than a 5% chance that the difference between your groups is solely due to
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BOX 10.2 Beyond Statistical Significance: Obtaining Information About
Effect Size

Your study’s t value gives you almost everything you
need to know to determine whether your results are
statistically significant. However, you may also want
to know whether your results are practically
significant. To know that, you may need to know how
large your effect is.

Using t to Estimate the Treatment’s Average Effect:
Confidence Intervals
One way to estimate effect size is to take advantage
of information you used when you computed your t.
Let’s start by looking at the top of the t ratio: the
difference between the mean of the no-treatment
group and the mean of the treatment group. The top
of the t ratio is an estimate of the treatment effect.
Thus, if the treatment group scores 2 points higher
than the no-treatment group, our best estimate is that
the treatment improved scores by 2 points.

Unfortunately, our best estimate is almost
certainly wrong: We have almost no confidence that
the treatment effect is exactly 2.000. We would be
more confident of being right if we said that the
treatment effect was somewhere between 1 and 3
points. We would be even more confident of being
right if we said that the real effect was somewhere
between 0 and 4 points. What we would like to do is
be more specific. We would like to say how confident
we are that the real effect is within a certain range.
For example, we would like to be able to say that we
are “95% confident that the effect of the treatment is
between 1 and 3 points.”

Fortunately, we can specify that we are 95%
confident that the real effect is between two values
by using the information we used to execute the t
test: the mean difference (the top of our t ratio), the
standard error of the difference (the bottom of our t
ratio), and the critical value of t at the .05 level. You
can find the critical value by looking in the t table
(Table 1 of Appendix F) at the intersection of the
“.05” column and the row corresponding to your
experiment’s degrees of freedom. For example, if you
had data from 42 participants, the value would be 2.021.

The middle of our confidence interval will be the
difference between the means of the treatment
group and the no-treatment group. That is, it will be
the top of the t ratio. In this example, that difference
is 2. To get our confidence interval’s upper value, we
start with the difference between our means (2).
Then, we add the number we get by multiplying the
standard error of the difference (the bottom of our t
value) by the critical value of t. To illustrate, suppose
that the difference between our means was 2, the
standard error of the difference was 1, and the critical
value of t was 2.021. To 2, we would add 2.021 (the
standard error of the difference [1] × the critical value
of t [2.021] = 2.021). Thus, the upper value of our
confidence interval would be 4.021 (2 + 2.021).

To get the lower value, we reverse the process.
We will again start with 2 (the difference between our
means). This time, however, we will subtract, rather
than add, 2.021 (the product of multiplying the
standard error by the critical t value) from 2.
Therefore, the lower value of our interval would be
−0.021 [2 − (1 × 2.021) = 2 − 2.021 = −0.021].

As the result of our calculations, we could say
that we were 95% confident that the true effect was
in the interval ranging from −0.021 to 4.021. By
examining this interval, we can form two conclusions.
First, we cannot confidently say that the treatment
effect has any effect because 0 (zero effect, no
effect) was within our interval. Second, we see that
our confidence interval is large and so our study lacks
power and precision. Therefore, we may want to repeat
the study in a way that shrinks the confidence interval
(e.g., using more participants, using more reliable
measures, using more homogeneous participants,
using more standardized procedures) so that we can
more precisely estimate the treatment’s effect.

For example, in the original study, we studied 42
participants. If we repeated the study using 62
participants and again found a difference between our
groups of 2, we would be 95% confident that the true
effect was between .35 and 3.6.1 Not only is this
interval narrower than the original interval

1When we calculated this confidence interval, we assumed that the standard deviations (an index of the extent to which
participants’ scores differ from the mean; a 0 would mean that nobody’s score differed from the mean) within each of
your groups would be the same as they were in the original study. If your procedures were more standardized when you
repeated the study, the standard deviations might be smaller and so your intervals might be even smaller than what we
projected.

(Continued)
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chance, you can be reasonably sure that some of the difference is due to your
treatment.

To learn about the size of your treatment’s effect, you might want to use
Box 10.2 to compute an index of effect size such as Cohen’s d. For example,
suppose your computer analysis presented the following results:

1. df ¼ 30, t ¼ 3.10, and p < .05
2. Mean difference ¼ 3.46
3. 95% CI of this difference: 1.57 to 5.35; SED ¼ 1.12
4. Group 1 mean ¼ 8.12; Group 1 SD ¼ 3.0; SEM ¼ 0.75
5. Group 2 mean ¼ 4.66; Group 2 SD ¼ 3.32; SEM ¼ 0.83

(which went from −0.021 to +4.021), but it also does
not include zero. Therefore, we could confidently say
that the treatment did have some effect. Note
another lesson from this example: Even though the
first study’s results were not statistically significant
(because we could not say that the treatment effect
was significantly different from zero) and the second
study’s results were significant (because we could
say that the treatment effect was significantly
different from zero), the two studies do not contradict
each other. The difference in the results is that the
second study, by virtue of its greater power and
precision, allows you to make a better case that the
treatment effect is greater than zero.

Using t to Compute Other Measures of Effect Size:
Cohen’s d and r2

In the previous section, you learned how to provide a
range that you were 95% confident contained the
average effect of the treatment. However, even if you
knew precisely what the average effect of the
treatment was, you would not know all you should
know about the treatment’s effect size. For example,
suppose you know that the average effect was 2. Is 2
a small effect? If your participants’ scores range from
0 to 100, a difference between your control group and
experimental group of 2 units might be a relatively
small effect. If, on the other hand, scores in your
control group vary from 0 to 1, and scores in your

treatment group vary from 2 to 3, a treatment effect
of 2 units would be a relatively large effect. Therefore,
to know the relative size of an effect, you need an
effect size measure that takes into account the
variability of the scores.

One popular effect size measure is Cohen’s d. If
you had the same number of participants in each
group, you can calculate Cohen’s d from your t value
by using the following formula: Cohen’s d ¼ 2t=

ffiffiffiffiffi
df

p
.

Thus, if t is 3 and df is 9, Cohen’s d will be
ð2×3Þ= ffiffiffi

9
p ¼ 6=3 ¼ 2. Usually, social scientists view a

d of 0.2 as indicating a small effect, a d of 0.5 as
indicating a medium effect, and a d of 0.8 as
indicating a large effect.

Another way of measuring the relationship
between the treatment and your dependent variable
is to square the correlation (r) between the treatment
and the dependent variable. The result will be a
measure, called the coefficient of determination,
that can range from 0 (no relationship) to 1.00 (perfect
relationship). Usually, social scientists view a
coefficient of determination of .01 as small, of .09 as
moderate, and of .25 as large (for more about the
coefficient of determination, see Chapter 7). If you
have computed d, you can compute the coefficient of
determination (r2) by using the following formula: r2 =
d2/(d2 + 4). To see the relationships among these
effect size measures, see Table 10.7.

BOX 10.2 Continued

372 CHAPTER 10 • The Simple Experiment



Using that data and Box 10.2, you would be able to determine that Cohen’s d
was 1.13.

Then, you could write up your results as follows:10 “As predicted, the
experimental group recalled significantly more words (M ¼ 8.12, SD ¼ 3.0)
than the control group (M ¼ 4.66, SD ¼ 3.32), t(30) ¼ 3.10, p < .05,
d ¼ 1.13.”

You could include even more information: APA strongly encourages
researchers to supplement significance tests with means, standard deviations,
and both confidence intervals and effect size measures. However, at the very
least, you should say something like this: “As predicted, the experimental
group recalled significantly more words (M ¼ 8.12) than the control group
(M ¼ 4.66), t(30) ¼ 3.10, p < .05.”

You must do more than report that your results are statistically signifi-
cant. Indeed, largely because some researchers have focused only on whether
their results are statistically significant, a few researchers have suggested that
statistical significance testing be banned (for more on the statistical signifi-
cance controversy, see Box 1 in Appendix E). Although not everyone agrees
that statistical significance testing should be banned, almost everyone agrees
that researchers need to do more than report p values.

TABLE 10.7
Relationship Among Different Effect Size Measures

INFORMATION FROM

THE T TEST EFFECT SIZE MEASURES

t
Degrees of
Freedom

Mean Difference
(example with low
variability in scores)

Mean Difference (ex-
ample with moderate
variability in scores) d

r 2 (also
called h2)

2 9 2 4.7 1.33 .31

2 16 1.4 3.7 1.0 .20

2 25 1.2 3.0 0.8 .14

2 36 1.0 2.5 0.67 .10

2 49 0.8 2.2 0.57 .08

2 64 0.7 1.9 0.50 .06

2 81 0.7 1.7 0.44 .05

2 100 0.6 1.5 0.40 .04

10M stands for mean, SD stands for standard deviation (a measure of the variability of the
scores; the bigger the SD, the more spread out the scores are and the less the scores cluster
around the mean), and d stands for Cohen’s d (a measure of effect size). SD will usually be cal-
culated as part of computing t (for more about SD, see Appendix E). To learn how to compute
d, see Box 10.2.
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Assumptions of the t Test
The validity of any p values you obtain from any significance test will depend
on how well you meet the assumptions of that statistical test. For the t test,
two of these assumptions are especially important: (1) having at least interval
scale data and (2) having independent observations.

Two Critical Assumptions
When the t test determines whether one group’s mean score is significantly
larger than the other’s, it assumes that groups with higher means have more of
the quality you are measuring than groups with lower means. Because only
interval and ratio scale data allow you to compute such “meaningful means,”
you must be able to assume that you have either interval scale or ratio scale
data (for a review of interval and ratio scale data, see Chapter 6).

Because you cannot compute meaningful means on either qualitative data
or ranked data, you cannot do a t test on those data. You cannot compute
meaningful means on qualitative (nominal, categorical) data because scores
relate to categories rather than amounts. With qualitative (nominal) data, 1
might equal “nodded head,” 2 might equal “gazed intently,” and 3 might
equal “blinked eyes.” With such nominal data, computing a mean (e.g., the
mean response was 1.8) would be meaningless.

With ranked and other ordinal data, the numbers have an order, but they
still don’t refer to specific amounts and so means can be meaningless and mis-
leading. For example, although averaging the ranks of second- and third-
place finishers in a race would result in the same mean rank (2.5) as averag-
ing the ranks of the first- and fourth-place finishers, the mean times of the
two groups might be very different. Despite having the same average rank,
the average times of the first- and fourth-place finishers could be much faster
or much slower than the average of the times of the second- and third-place
finishers.

Although having either nominal or ordinal data prevents you from com-
paring group means with a t test, you can still compare two groups using
tests, such as the Mann-Whitney U test (for ordinal data) and the chi-square
test (for either nominal or ordinal data), that do not involve comparing
means. (For more on these tests, see Appendix E.)

The second assumption you must meet to perform a legitimate t test is
that your observations must be independent. Specifically, (a) participants
must be assigned independently (e.g., individually, so that the assignment of
Mary to the experimental group has no effect on whether John is assigned to
the experimental group); (b) participants must respond independently (e.g., no
participant’s response influences any other participant’s response); and (c)
participants must be tested independently so that, other than the treatment,
there is no systematic difference between how experimental and control
group participants are treated.

If you followed our advice and independently and randomly assigned
each participant to either the experimental or the control conditions, and
then ran participants individually (or in small groups or in larger groups that
mixed experimental and control participants), your observations are indepen-
dent. If, however, your observations are not independent, you cannot legiti-
mately do a conventional independent groups t test. Indeed, violating
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independence often means that the data from your study are unanalyzable
and thus worthless.

To reiterate, to do a meaningful independent t test in a simple experi-
ment, your data must meet two key assumptions: You must have at least
interval scale data, and you must have used independently assigned partici-
pants to groups. In addition to these two pivotal assumptions, the t test
makes two less vital assumptions (see Table 10.8).

Two Less Critical Assumptions
First, the t test assumes that the individual scores in the population from
which your sample means were drawn are normally distributed: half the
scores are below the average score; half are above; the average score is the
most common score; about 2/3 of the scores are within one standard devia-
tion of the mean; about 19/20 of the scores are within two standard devia-
tions of the mean; and if you were to plot how often each score occurred,
your plot would resemble a bell-shaped curve. The reason for this assumption
is that if the individual scores in the population are normally distributed, the
distribution of sample means based on those scores will also tend to be nor-
mally distributed.11 The assumption that individual scores are normally

TABLE 10.8
Effects of Violating the t Test’s Assumptions

ASSUMPTION CONSEQUENCES OF VIOLATING ASSUMPTION

Observations are independent (partici-
pants are independently assigned and
participants do not influence one
another’s responses).

Serious violation; probably nothing can
be done to salvage your study.

Data are interval or ratio scale (e.g.,
numbers must not represent qualitative
categories, nor may they represent ranks
[first, second, third, etc.]).

Do not use a t test. However, you may
be able to use another statistical test
(e.g., Mann-Whitney U, Chi-square).

The population from which your sample
means was drawn is normally distributed.

If the study used more than 30 partici-
pants per group, this is not a serious
problem. If, however, fewer participants
were used, you may decide to use a
different statistical test.

Scores in both conditions have the same
variance.

Usually not a serious problem.

11Why do we have to assume that the distribution of sample means is normally distributed? We
need to know precisely how the sample means are distributed to establish how likely it is that
the two sample means could differ by as much as they did by chance alone. In other words, if
we are wrong about how the sample means are distributed, our p value—our estimate of the
probability of the sample means differing by as much as they did if their population means were
the same—would be wrong.
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distributed is usually nothing to worry about because most distributions are
normally distributed.

But what if the individual scores aren’t normally distributed? Even then,
your sample means probably will be normally distributed—provided you
have more than 30 participants per group. That is, as the central limit theo-
rem states, with large enough samples (and 30 per group is usually large
enough), the distribution of sample means will be normally distributed,
regardless of how individual scores are distributed.

To understand why the central limit theorem works, realize that if you
take numerous large samples from the same population, your sample means
will differ from one another for only one reason: random error. Because ran-
dom error is normally distributed, the distributions of sample means will be
normally distributed—regardless of the shape of the underlying population.

The t test’s second less critical assumption is that the variability of scores
within your experimental group will be about the same as the variability of
scores within your control group. To be more precise, the assumption is that
scores in both conditions will have the same variance.12 Usually, the penalty
for violating the assumption of equal variances is not severe. Specifically, if
you have unequal variances, it won’t seriously affect the results of your t
test, as long as one variance isn’t more than 2½ times larger than the other.

QUESTIONS RAISED BY RESULTS
Obviously, if you violate key assumptions of the t test, people should ques-
tion your results. But even if you don’t violate any of the t test’s assumptions,
your results will raise questions—and this is true whether or not your results
are statistically significant.

Questions Raised by Nonsignificant Results
Nonsignificant results raise questions because the null hypothesis cannot be
proven. Therefore, null results inspire questions about the experiment’s
power such as the following:

1. Did you have enough participants?
2. Were the participants homogeneous enough?
3. Was the experiment sufficiently standardized?
4. Were the data coded carefully?
5. Was the dependent variable sensitive and reliable enough?
6. Would you have found an effect if you had chosen two different levels of

the independent variable?

12To get the variance for a group, square that group’s standard deviation (SD). If you used a
computer to get your t, the computer program probably displayed each group’s SD. If you cal-
culated the t by hand, you probably calculated each group’s SD as part of those calculations.
Some computer programs will do a statistical test such as Levene’s Test for Equality of Variance
to tell you how reasonable it is to assume that the groups have the same variance. If the p value
for the Levene’s Test for Equality of Variance is statistically significant, it means that the var-
iances are probably different: It does not mean that the treatment has an effect. If the variances
are significantly different, instead of a conventional t test, you may want to do Welch’s test
instead. Some programs will also calculate two t values for you: one assuming equal variances,
one not making that assumption.
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Questions Raised by Significant Results
If your results are statistically significant, it means you found an effect for
your treatment. So, there’s no need to question your study’s power. However,
a significant effect raises other questions. Sometimes, questions are raised
because statistical significance doesn’t tell us how big the effect is (see
Box 10.2).

Sometimes, questions are raised because the experimenter sacrificed con-
struct or external validity to obtain adequate power. For example, if you
used an empty control group, you have questionable construct validity. Con-
sequently, one question would be: “Does your significant treatment effect
represent an effect for the construct you tried to manipulate or would a
placebo treatment have had the same effect?” Or, if you used an extremely
homogeneous group of participants, the external validity of your study might
be questioned. For instance, skeptics might ask: “Do your results apply to
other kinds of participants?” Thus, skeptics might want you to increase the
external validity of your study by repeating it with a more representative sam-
ple. Specifically, they might want you to first use random sampling to obtain
a representative group of participants and then randomly assign those partici-
pants to either the control or experimental group.

At other times, questions are raised because of a serious limitation of the
simple experiment: It can study only two levels of a single independent vari-
able. Because of this, there are two important questions you can ask of any
simple experiment:

1. To what extent do the results apply to levels of the independent variable
that were not tested?

2. To what extent could the presence of other variables modify (strengthen,
weaken, or reverse) the treatment’s effect?

CONCLUDING REMARKS
As you have seen, the results of a simple experiment always raise questions.
Although results from any research study raise questions, some questions
raised by the results of the simple experiment occur because the simple exper-
iment is limited to studying only two levels of a single variable. If the logic of
the simple experiment could be used to create designs that would study sev-
eral levels of several independent variables, such designs could answer several
questions at once. Fortunately, as you will see in Chapters 11 and 12, the
logic of the simple experiment can be extended to produce experimental
designs that will allow you to answer several research questions with a single
experiment.

SUMMARY
1. Psychologists want to know the causes of

behavior so that they can understand people
and help people change. Only experimental
methods allow us to isolate the causes of an
effect.

2. Studies that don’t manipulate a treatment are
not experiments.

3. Many variables, such as participant’s age,
participant’s gender, and participant’s per-
sonality, can’t be manipulated. Therefore,
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many variables can’t be studied using an
experiment.

4. The simple experiment is the easiest way to
establish that a treatment causes an effect.

5. The experimental hypothesis states that the
treatment will cause an effect.

6. The null hypothesis, on the other hand, states
that the treatment will not cause an observ-
able effect.

7. With the null hypothesis, you only have two
options: You can reject it, or you can fail to
reject it. You can never accept the null
hypothesis.

8. Typically, in the simple experiment, you
administer a low level of the independent
(treatment) variable to some of your partici-
pants (the comparison or control group) and
a higher level of the independent variable to
the rest of your participants (the experimental
group). Near the end of the experimental
session, you observe how each participant
scores on the dependent variable: a measure
of the participant’s behavior.

9. To establish causality with a simple experi-
ment, participants’ responses must be
independent. Because of the need for
independence, your experimental and control
groups are not really groups. Instead, these
“groups” are sets of individuals.

10. Independent random assignment is the
cornerstone of the simple experiment:
Without it, you do not have a simple
experiment.

11. Independent random assignment is necessary
because it is the only way to make sure that
the only differences between your groups are
either due to chance or to the treatment.

12. Independent random assignment makes it
likely that your control group is a fair com-
parison group. Therefore, if you use random
assignment, the control and experimental
groups should be equivalent before you
introduce the treatment.

13. Random assignment can be used only if you
are manipulating (assigning) a treatment. It
involves assigning one level of a treatment to
some participants and a different level of that

treatment to other participants. Random
assignment helps a study’s internal validity.

14. Your goal in using independent random
assignment is to create two samples that
accurately represent your entire population of
participants. You use the mean of the control
group as an estimate of what would have
happened if all your participants had been in
the control group. You use the experimental
group mean as an estimate of what the mean
would have been if all your participants had
been in the experimental group.

15. The t test tries to answer the question, “Does
the treatment have an effect?” In other words,
would participants have scored differently
had they all been in the experimental group
than if they had all been in the control group?

16. If the results of the t test are statistically sig-
nificant, the difference between your groups
is greater than would be expected by chance
(random error) alone. Therefore, you reject
the null hypothesis and conclude that your
treatment has an effect. Note, however, that
statistical significance does not tell you that
your results are big, important, or of any
practical significance.

17. There are two kinds of errors you might make
when attempting to decide whether a result is
statistically significant. Type 1 errors occur
when you mistake a chance difference for a
treatment effect. Before the study starts, you
choose your “false alarm” risk (risk of mak-
ing a Type 1 error). Most researchers decide
to take a 5% risk. Type 2 errors occur when
you fail to realize that the difference between
your groups is not solely due to chance. In a
sense, Type 2 errors involve overlooking a
genuine treatment effect.

18. By reducing your risk of making a Type 1
error, you increase your risk of making a
Type 2 error. That is, by reducing your
chances of falsely “crying wolf” when there is
no treatment effect, you increase your
chances of failing to yell “wolf” when there
really is a treatment effect.

19. Because Type 2 errors can easily occur, non-
significant results are inconclusive results.
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20. To prevent Type 2 errors, (a) reduce random
error, (b) use many participants to balance
out the effects of random error, and (c) try to
increase the size of your treatment effect.

21. You can easily determine your risks of a Type
1 error, but there’s no way you can design
your experiment to reduce them. In contrast,
it is hard to determine your risk of making a
Type 2 error, but there are many ways you
can design your study to reduce your risk of
making such errors.

22. If your experiment minimizes the risk of
making Type 2 errors, your experiment has
power. In the simple experiment, power refers
to the ability to obtain statistically significant
results when your independent variable really
does have an effect.

23. Sometimes, efforts to improve power may
hurt the study’s external validity. For exam-
ple, to get power, researchers may use a
highly controlled lab setting rather than a
real-life setting. Likewise, power-hungry
researchers may study participants who are
very similar to each other rather than a wide
range of participants.

24. Occasionally, efforts to improve power may
hurt the study’s construct validity.

25. Using placebo treatments, single blinds, and
double blinds can improve your study’s con-
struct validity.

26. Ethical concerns may temper your search for
power—or even cause you to decide not to
conduct your experiment.

27. Because of random error, you cannot deter-
mine whether your treatment had an effect
simply by subtracting your experimental
group mean from your control group mean.
Instead, you must determine whether the dif-
ference between your group means could be
due to random error.

28. The t test involves dividing the difference
between means by an estimate of the degree
to which the groups would differ when the
treatment had no effect. More specifically, the
formula for the t test is: (Mean 1 − Mean 2)/
standard error of the difference.

29. The degrees of freedom for a two-group
between-subjects t test are 2 less than the total
number of participants.

30. The t test is a common way to analyze data
from a simple experiment.

31. If your data do not meet the assumptions of
the t test, your statistical analysis may give
you misleading results.
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EXERCISES
1. A professor has a class of 40 students. Half

of the students chose to take a test after
every chapter (chapter test condition) out-
side of class. The other half of the students
chose to take in-class “unit tests.” Unit tests
covered four chapters. The professor finds
no statistically significant differences
between the groups on their scores on a
comprehensive final exam. The professor
then concludes that type of testing does not
affect performance.
a. Is this an experiment?
b. Is the professor’s conclusion reasonable?

Why or why not?
2. Participants are randomly assigned to med-

itation or no-meditation condition. The
meditation group meditates three times a
week. The meditation group reports being
significantly more energetic than the no-
meditation group.
a. Why might the results of this experiment

be less clear-cut than they appear?
b. How would you improve this

experiment?
3. Theresa fails to find a significant difference

between her control group and her experi-
mental group t (10) ¼ 2.11, not significant.
a. Given that her results are not significant,

what—if anything—would you advise
her to conclude?

b. What would you advise her to do? (Hint:
You know that her t test, based on 10
degrees of freedom, was not significant.
What does the fact that she has 10
degrees of freedom tell you about her
study’s sample size, and what does it
suggest about her study’s power?)

4. A training program significantly improves
worker performance. What should you
know before advising a company to invest
in such a training program?

5. Jerry’s control group is the football team,
his experimental group is the baseball team.
He assigned the groups to condition using
random assignment. Is there a problem with
Jerry’s experiment? If so, what is it? Why is
it a problem?

6. Students were randomly assigned to two
different strategies of studying for an exam.
One group used visual imagery, the other
group was told to study the normal way.
The visual imagery group scores 88% on
the test as compared to 76% for the control
group. This difference was not significant.
a. What, if anything, can the experimenter

conclude?
b. If the difference had been significant,

what would you have concluded?
c. “To be sure that they are studying the

way they should, why don’t you have the
imagery people form one study group
and have the control group form another
study group?” Is this good advice? Why
or why not?

d. “Just get a sample of students who typi-
cally use imagery and compare them to a
sample of students who don’t use imag-
ery. That will do the same thing as ran-
dom assignment.” Is this good advice?
Why or why not?

7. Bob and Judy are doing the same study,
except that Bob has decided to put his risk
of a Type 1 error at .05 whereas Judy has
put her risk of a Type 1 error at .01. (Note
that consulting Table 1 in Appendix F will
help you answer parts a and b.)
a. If Judy has 22 participants in her study,

what t value would she need to get sig-
nificant results?

b. If Bob has 22 participants in his study,
what t value would he need to get sig-
nificant results?

c. Who is more likely to make a Type 1
error? Why?

d. Who is more likely to make a Type 2
error? Why?

8. Gerald’s dependent measure is the order in
which people turned in their exam (first,
second, third, etc.). Can Gerald use a t test
on his data? Why or why not? What would
you advise Gerald to do in future studies?

9. Are the results of Experiment A or Experi-
ment B more likely to be significant? Why?
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10.

11. Are the results of Experiment A or Experi-
ment B more likely to be significant? Why?

12.

WEB RESOURCES
1. Go to the Chapter 10 section of the book’s student

website and

a. Look over the concept map of the key terms.
b. Test yourself on the key terms.
c. Take the Chapter 10 Practice Quiz.
d. Do the interactive end-of-chapter exercises.

2. Do a t test using a statistical calculator by going to
the “Statistical Calculator” link.

3. Find out how to conduct a field experiment by
reading “Web Appendix: Field Experiments.”

4. If you want to write your method section, use the
“Tips on Writing a Method Section” link.

5. If you want to write up the results of a simple
experiment, click on the “Tips for Writing Results”
link.

EXPERIMENT A EXPERIMENT B

Control group Experimental group Control group Experimental group

3 4 0 0

4 5 4 5

5 6 8 10

EXPERIMENT A EXPERIMENT B

Control group Experimental group Control group Experimental group

3 4 3 4

4 5 4 5

5 6 5 6

3 4

4 5

5 6

3 4

4 5

5 6

10.
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Perhaps too much of everything is as bad as too little.

—Edna Ferber

Scientific principles and laws do not lie on the surface of nature. They

are hidden, and must be wrested from nature by an active and

elaborate technique of inquiry.

—John Dewey

CHAPTER OVERVIEW

We devoted Chapter 10 to the simple experiment: the design that involves

randomly assigning participants to two groups. The simple experiment is

internally valid and easy to conduct. However, it is limited in that you can

study only two values of a single independent variable.

In this chapter, you will see why you might want to go beyond studying

two values of a single variable. Then, you will see how the principle that

gives the simple experiment internal validity (random assignment of partici-

pants to two groups) can be extended to experiments that study the

effects of three or more values of a single independent variable. Finally, you

will learn how to analyze data from such multiple-group experiments.

THE ADVANTAGES OF USING MORE THAN TWO VALUES
OF AN INDEPENDENT VARIABLE

The simple experiment is ideal if an investigator wants to compare a single
treatment group to a single no-treatment control group. However, as you
will see, investigators often want to do more than compare two groups.

Comparing More Than Two Kinds of Treatments
We do not live in a world where there are only two flavors of ice cream, only
two types of music, and only two opinions on how to solve any particular
problem. Because people often choose between more than two options, inves-
tigators often compare more than two different kinds of treatments.

For instance, to decide how police should respond to a domestic dispute,
investigators compared three different strategies: (1) arrest a member of the cou-
ple, (2) send one member away for a cooling off period, and (3) give advice and
mediate the dispute (Sherman & Berk, 1984). Clearly, investigators could not
compare three different treatments in one simple, two-group experiment. There-
fore, instead of randomly assigning participants to two different groups, they
randomly assigned participants to three different groups. (To learn how to ran-
domly assign participants to more than two groups, see Box 11.1.)

In another case of attacking an applied problem, Cialdini (2005) saw a
problem we all see—a well-intentioned, written request to do something
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good—and he wondered what most of us have wondered: Would wording
the request differently make it more effective? Specifically, he questioned the
effectiveness of hotel room signs that urge guests to conserve water by reusing
towels because doing so will (1) preserve the environment and (2) help the
hotel donate money to an environmental cause. Cialdini believed that
approaches that used psychological principles would be more effective than
the hotels’ usual approach, and he could think of at least two principles that
he could apply.

First, he could apply the principle that people tend to do what they
believe others do. Thus, he created a sign stating that 75% of guests reuse
their towels.

Second, he could apply the principle that people tend to repay a favor.
Thus, he created a sign stating that the hotel had already donated money to
protect the environment on behalf of the hotel guests and wanted to recover
that expense.

To test his two solutions against conventional practice, Cialdini needed at
least three groups: (1) a group that got the conventional treatment—a “pre-
serve the environment plus hotel donation” group, (2) a “most other people
are doing it” group, and (3) a “repay a favor” group. As Cialdini suspected,
both the “repay a favor” and the “most other people are doing it” reused
their towels much more than the group that saw the sign hotels typically
used.

BOX 11.1 Randomly Assigning Participants to More Than Two Groups

Step 1 Across the top of a piece of paper write down
your conditions. Under each condition draw a line for
each participant you will need.

GROUP 1 GROUP 2 GROUP 3

—— —— ——

—— —— ——

—— —— ——

—— —— ——

Step 2 Turn to a random numbers table (there’s one
in Table 6, Appendix F). Roll a die to determine
which column in the table you will use.

Step 3 Assign the first number in the column to the
first space under Group 1, the second number to the
second space, and so forth. When you have filled

the spaces for Group 1, put the next number under
the first space under Group 2. Similarly, when you fill
all the spaces under Group 2, place the next number
in the first space under Group 3.

GROUP 1 GROUP 2 GROUP 3

12 20 63

39 2 64

53 37 95

29 1 18

Step 4 Replace the lowest random number with
“Participant 1,” the second lowest random number
with “Participant 2,” and so on. Thus, in this example,
your first two participants would be in Group 2, and
your third participant would be in Group 1.
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Clearly, Cialdini could not compare three groups in a single, two-group
experiment. Thus, he used a multiple-group experiment. Similarly, Nairne,
Thompson, and Pandeirada (2007) hypothesized that people are best able to
remember information when they rate its relevance to their survival. To see
whether the survival rating task was the best rating task for helping partici-
pants recall information, Nairne et al. used a multiple-group experiment to
compare their rating task to other rating tasks that help memory (e.g., rating
how pleasurable the word is, rating how personally relevant the word is). In
short, if, like Cialdini or Nairne and his colleagues, you want to compare
more than two treatments, you should use a multiple-group experiment.

Comparing Two Kinds of Treatments With No Treatment
Even when you are interested in comparing only two types of treatments, you
may be better off using a multiple-group experiment. To understand why,
let’s consider the following research finding: For certain kinds of back pro-
blems, people going to a chiropractor end up better off than those going for
back surgery. Although an interesting finding, it leaves many questions unan-
swered. For example, is either treatment better than nothing? We don’t know
because the researchers didn’t compare either treatment to a no-treatment
control condition. It could be that both treatments are worse than nothing
and chiropractic treatment is merely the lesser of two evils. On the other
hand, both treatments could be substantially better than no treatment and
chiropractic could be the greater of two goods.

Similarly, if we compared two untested psychological treatments in a sim-
ple experiment, we would know only which is better than the other: We
would not know whether the better one was the less harmful of two “bad”
treatments or the more effective of two “good” treatments. Thus, we would
not know whether the lesser of the two treatments was (1) moderately harm-
ful, (2) neither harmful nor helpful, or (3) mildly helpful. However, by using
a three-group experiment that has a no-treatment control group, we would
be able to judge not only how effective the two treatments were relative to
each other but also their overall, general effectiveness. Consider the following
examples of how adding a no-treatment control group helps us know what
effect the treatments had.

● In a classic experiment, Loftus (1975) found that leading questions dis-
torted participants’ memories of a filmed car accident. All participants
watched a film of a car accident, completed a test booklet that contained
questions about the film, and a week later, answered some more ques-
tions about the film. But participants were not treated identically because
not all participants got the same test booklet. Instead, each participant
was randomly assigned to receive one of the following three test booklets:

1. The “presume” booklet contained 40 questions asked of all partici-
pants, plus 5 additional questions that asked whether certain objects—
objects that were not seen in the film—were in the film. These
5 additional questions were leading questions: questions suggesting
that the object was shown in the film (e.g., “Did you see the school
bus in the film?”).

2. The “mention but don’t presume” booklet contained 40 questions
asked of all participants, plus 5 additional questions that asked
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whether certain objects—objects that were not seen in the film—were
in the film. This booklet was the same as the “presume” booklet
except that the 5 additional questions did not suggest that the item
was shown in the film (e.g., “Did you see a school bus in the film?”).

3. A control booklet that contained 40 questions asked of all
participants.

Note that without a control group, Loftus would not have known
whether the difference between the nonleading question and leading
question group was due to (a) the nonleading question condition sharp-
ening memory or (b) the leading question condition distorting memory.

● Crusco and Wetzel (1984) looked at the effects of having servers touch
restaurant customers on the tips that servers received. Had they only
compared hand-touching with shoulder-touching, they would not have
known whether touching had an effect. Thanks to the no-touch control
group, they learned that both kinds of touching increase tipping.

● Anderson, Carnagey, and Eubanks (2003) looked at the effects of violent
lyrics on aggressive thoughts. Had they used only nonviolent and violent
songs, they would not have known whether nonviolent songs reduced
aggressive thoughts or whether violent songs increased aggressive
thoughts. Thanks to the no-song control condition, they learned that vio-
lent lyrics increased aggressive thoughts.

● Strayer and Drews (2008) looked at the effects of cell phones on driving.
Had they only compared the driving performance of drivers who use
hand-held cell phones to drivers who use hands-free cell phones, they
would not have found an effect for cell phones. However, thanks to a no
cell phone control group, they learned that cell phone use impairs
driving.

Comparing More Than Two Amounts of an Independent Variable
to Increase External Validity
In the simple experiment, you are limited to two amounts of your indepen-
dent variable. However, we do not live in a world where variables come in
only two amounts. If we did, other people would be either friendly or
unfriendly, attractive or unattractive, like us or unlike us, and we would be
either rewarded or punished, included or excluded, and in complete control
or have no control. Instead, we live in a world where situations vary not so
much in terms of whether a quality (e.g., noise) is present but rather the
degree to which that quality is present.

Not only that, but we live in a world where more is not always better.
Sometimes, too little of some factor can be bad, too much can be bad, but
(to paraphrase the littlest of the three bears) a medium amount is just right.
In such cases, a simple, two-valued experiment can lead us astray.

To see how simple experiments can be misleading, suppose that a low
amount of exercise leads to a poor mood, a moderate amount of exercise
leads to a good mood, and a high amount of exercise leads to a poor mood.
Such an upside-down “U”-shaped relationship is plotted in Figure 11.1a.
As you can see, if we did a multiple-group experiment, we would uncover
the true relationship between exercise and mood. However, if we did a simple

386 CHAPTER 11 • Expanding the Simple Experiment



experiment, our findings might be misleading. For example, if we did the sim-
ple experiment depicted in

● Figure 11.1b, we might conclude that exercise increases mood
● Figure 11.1c, we might conclude that exercise decreases mood
● Figure 11.1d, we might conclude that exercise does not affect mood

As you have just seen, if a researcher is to make accurate statements
about the effects of an independent variable, the researcher must know the
independent and dependent variables’ functional relationship: the shape of the
relationship.

If you are going to map the shape of a functional relationship accurately,
you need more than the two data points that a simple experiment provides.
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FIGURE 11.1 How a Multiple-Group Experiment Can Give You a More Accurate Picture of a
Relationship Than a Simple Experiment
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Simple experiments do not enable you to uncover the nature of a functional
relationship because many different shaped lines can be drawn between two
points. To appreciate this, consider Figure 11.2. From the two known data
points (the empty circles), can you say what the relationship between the vari-
ables is?

No, you can’t. Perhaps the relationship is a linear relationship: one that is
represented by a straight line. A straight line does fit your two points. How-
ever, maybe your relationship is not linear: As you can see from Figure 11.3,
many other curved lines also fit your two points.

Because lines of many different shapes can be drawn between the two
points representing a simple experiment’s two group means, the simple exper-
iment does not help you discover the functional relationship between the vari-
ables. Thus, if your simple experiment indicated that 100 minutes of exercise
produced a better mood than 0 minutes of exercise, you would still be clue-
less about the functional relationship between exercise and mood. Therefore,
if we asked you about the effects of 70 minutes of exercise on mood, you
could do little more than guess. If you assumed that the exercise-mood rela-
tionship is linear, you would guess that exercising 70 minutes a day would
be (a) better than no exercise and (b) worse than exercising 100 minutes a
day. But if your assumption of a linear relationship is wrong (and it well
could be), your guess would be wrong.

To get a line on the functional relationship between variables, you
need to know more than two points. Therefore, suppose you expanded the
simple experiment into a multilevel experiment by adding a group that gets
50 minutes of exercise a day. Then, you would have a much clearer idea of
the functional relationship between exercise and happiness. As you can see
in Figure 11.4 on page 390, using three levels can help you identify the
functional relationship among variables. If the relationship is linear, you
should be able to draw a straight line through your three points. If the
relationship is U-shaped, you’ll be able to draw a “U” through your three
points.

Because you can get a good picture of the functional relationship when
you use three levels of the independent variable, you can make accurate
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FIGURE 11.2 Linear Relationship Between Two Points
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predictions about unexplored levels of the independent variable. For example,
if the functional relationship between exercise and happiness were linear, you
might obtain the following pattern of results:

Group 1 0 minutes of exercise per day 0.0 self-rating of happiness

Group 2 50 minutes of exercise per day 5.0 self-rating of happiness

Group 3 100 minutes of exercise per day 10.0 self-rating of happiness
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FIGURE 11.3 Some Possible Nonlinear Relationships
Note: The circles represent the known data points. The boxes between the circles are what might happen at
a given level of the independent variable, depending on whether the relationship between the variables is
characterized by (a) an S-shaped (negatively accelerated) trend, (b) a J-shaped (positively accelerated) trend, (c)
a U-shaped (quadratic) trend, or (d) a double U-shaped (cubic) trend.

CHAPTER 11 • The Advantages of Using More Than Two Values of an Independent Variable 389



In that case, you could confidently predict that 70 minutes of exercise would
be less beneficial for increasing happiness than 100 minutes of exercise.

If, on the other hand, the relationship was S-shaped (as in Figure 11.3),
you might get the following pattern of results:

Group 1 0 minutes of exercise per day 0.0 self-rating of happiness

Group 2 50 minutes of exercise per day 10.0 self-rating of happiness

Group 3 100 minutes of exercise per day 10.0 self-rating of happiness

In that case, you would predict that a person who exercised 70 minutes
would do as well as someone exercising 100 minutes a day.

The more groups you use, the more accurately you can pin down the
shape of the functional relationship. Yet, despite this fact, you do not need
to use numerous levels of the independent variable. Why? Because nature pre-
fers simple patterns. That is, most functional relationships are linear (straight
lines), and few are more complex than U-shaped functions. Consequently,
you will rarely need more than four levels of the independent variable to pin
down a functional relationship. In fact, you will usually need no more than
three carefully chosen levels.
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FIGURE 11.4 Having Three Levels of the Independent Variable (Three Data Points) Helps You
Identify the Shape of the Functional Relationship
With these three points, we can be relatively confi-
dent that the relationship is linear (fits a straight line).
Most nonlinear relationships (see Figure 11.3) would
not 1produce data that would fit these three data
points.

If we had these three data points, we could be rela-
tively confident that the relationship is curvilinear (fits
a curved line). Specifically, we would suspect that
we had a quadratic relationship: a relationship
shaped like a “U” or an upside-down “U.”
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Conclusions: Multilevel Experiments and External Validity
In summary, knowing the functional relationship between two variables is
almost as important as knowing that a relationship exists. If you want to
give practical advice, you should be able to say more than: “If you exercise
100 minutes a day, you will be happier than someone who exercises 0 min-
utes a day.” Who exercises exactly 100 minutes a day? You want to be able
to generalize your results so that you can tell people the effects of exercising
50 minutes, 56 minutes, 75 minutes, and so forth. Yet, you have no intention
of testing the effects of every possible amount of exercise a person might do.
Instead, you want to test only a handful of exercise levels. If you choose these
levels carefully, you will be able to map the functional relationship between
the variables. Mapping the functional relationship, in turn, will allow you to
make educated predictions about the effects of treatment levels that you have
not directly tested.

When applying psychology, you need to know the functional relationship
so you can know how much of a therapy or other treatment to administer.
How much is too little? At what point is additional treatment not worth it?
How much is too much? If you know the answers to these questions, not
only do you avoid wasting your time and your client’s time on unnecessary
treatments, but you also free up time and resources to help a client who
needs it (Tashiro & Mortensen, 2006).

When mapping functional relationships, psychologists often manipulate
independent variables that have names starting with “number of,” such as
number of others, number of milligrams of a drug, or number of seconds of
exposure to a stimulus. You may be inspired by studies like the following
classics.

● In Asch’s (1955) line-judging experiments, he led participants to believe
that they were part of a group that was participating in a visual perception
study. The participant’s job was to pick the line on the right that matched
the line on the left. In reality, the experiment was a social influence experi-
ment, and the other members of the group were really confederates (assis-
tants) of the experimenter. Asch wanted to know whether the size of group
would affect people’s conformity to the group. He found that as group size
went from two to five, participants were more likely to conform. However,
he found that increasing the group size beyond seven actually decreased
the chances that participants would go along with the group.

● In Latané, Williams, and Harkins’s (1979) social loafing experiments, inves-
tigators wanted to know how loafing would change as a function of group
size. They found that adding two members to a group increased loafing, but
that adding two members increased loafing more in smaller groups than in
larger groups.

● In Milgram, Bickman, and Berkowitz’s (1969) conformity experiment, con-
federates looked up at the sixth floor window of an office building. Because
the researchers were interested in the effects of group size on conformity,
the researchers had 1, 2, 3, 5, 10, or 15 confederates look up at the office
building. Then, they counted the number of people passing by who also
looked up. They found that the bigger their initial group, the stronger the
group’s influence.
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● In Darley and Latané’s (1968) study of helping behavior, participants
thought they were talking via intercom to either one, two, or five other
participants (actually, the participant was alone—the voices came from a
tape-recording) when one of them had a seizure. They found that the more
people participants thought were in the group, the less likely participants
were to help.

● In Middlemist, Knowles, and Matter’s (1976) urinal study, researchers
found that the closer a confederate was standing to a participant, the
longer it took for the participant to begin urinating.

● In Ambady and Rosenthal’s (1993) “thin slices” experiments, participants
watched—with the sound off—three video clips of a professor. The clips
varied in length: One group saw 2-second clips, a second group saw 5-
second clips, and a third group saw 10-second clips. The researchers
found that participants in all three groups gave the professor the same
ratings as students who sat in the professor’s class all term gave that
professor.

● In Basson, McInnes, Smith, Hodgson, and Koppiker’s (2002) study of the
effect of Viagra on women, neither the 10-mg, 50-mg, or 100-mg doses
of Viagra were more effective in increasing sexual response than a
placebo.

Although it is easy to map functional relationships when the name of your
independent variable starts with “number of,” realize that you can map func-
tional relationships between most variables because—with a little work—most
variables can be quantified. If you can manipulate a variable between two
extreme levels (e.g., low and high), you can probably also manipulate it in
between those extremes (e.g., medium). To illustrate, consider a variable that
is not obviously quantitative: similarity. Byrne (1961) manipulated similarity
from 0% to 100% by (a) making participants believe they were seeing another
student’s responses to an attitude survey and then (b) varying the proportion of
responses that matched the participant’s attitudes from 0% to 100%.

If your independent variable involves exposing participants to a stimulus,
you can usually quantify your manipulation by doing some work before you
start your study. Specifically, you could (a) produce several variations of the
stimulus, (b) have volunteers rate each of those variations, and then (c) use
the variations that have the values you want in your experiment. For exam-
ple, suppose you wanted to manipulate physical attractiveness by showing
participants photos of people who varied in attractiveness. You could take a
photo of an attractive person, then (a) get some less attractive photos of the
person by messing with the person’s makeup or by messing with their picture
using a computerized photo editing program, (b) have some volunteers rate
the attractiveness of each photo on a 0-to-10 scale, and (c) use, as your three
stimuli, the photos that were consistently rated 4, 6, and 8, respectively. Real-
ize that this scaling strategy is not just for pictures: If your manipulation was
“severity of a crime” or “legitimacy of an excuse” or almost anything else,
you could still use this scaling strategy.

Even without scaling your independent variable, you may still be able to
order the levels of your manipulation from least to most and then see whether
more of the manipulation creates more of an effect. For example, in one study
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(Risen & Gilovich, 2007) all participants were to imagine the following
scenario:

You bought a lottery ticket from a student who was organizing a lottery. How-
ever, on the day of the drawing, you left your money at home and so had no
money to buy lunch. To buy lunch, you sold your ticket back to the student who
sold it to you.

Then, 1/3 of the participants were told to imagine that the lottery ticket
was eventually purchased by their best friend, 1/3 were told to imagine that
the ticket was purchased by a stranger, and 1/3 were told to imagine that the
ticket was purchased by their “ex-friend and least favorite person at school”
(p. 16). As Risen and Gilovich predicted, the less the participants liked the
person who would eventually own their original ticket, the more likely parti-
cipants thought that ticket would be the winning ticket. Conversely, Young,
Nussbaum, and Monin (2007) showed that if a disease could be spread by
sexual contact, people were reluctant to have themselves tested for it, and
this reluctance was unaffected by whether sexual contagion was an unlikely
(e.g., only 5% of the cases were due to sexual contact) or likely (e.g., 90%
of the cases were due to sexual contact) cause of the disease.

Using Multiple Groups to Improve Construct Validity
You have seen that multilevel experiments—because their results can general-
ize to a wider range of treatment levels—can have more external validity than
simple experiments. In this section, you will learn that multilevel experiments
can also have more construct validity than simple experiments.

Confounding Variables in the Simple Experiment
In Chapter 10, you saw that thanks to random assignment, simple experi-
ments are able to rule out the effects of variables unrelated to the treatment
manipulation. For example, because of random assignment, the effects of par-
ticipant variables such as gender, race, and personality usually will not be
confused for a treatment effect. In other words, a statistically significant dif-
ference between the control group and the experimental group at the end of
the experiment will probably not be due to the groups being different before
the treatment was introduced.

So, simple experiments effectively control for the effects of variables that
have nothing to do with the treatment manipulation. But what if the treat-
ment is manipulating more than the one variable it’s supposed to be manipu-
lating? For instance, what if an “exercise” manipulation is also manipulating
social support? Simple experiments are often unable to rule out the effects of
variables that are manipulated along with the treatment.

In an ideal world, this limitation of the simple experiment would not be a
problem. Your treatment would be a pure manipulation that creates one—
and only one—systematic difference between the experimental group and the
control group. Unfortunately, it is rare to have a perfect manipulation.
Instead, the treatment manipulation usually produces several differences
between how the experimental and control groups are treated.

For example, suppose that a simple experiment apparently found that the
“attractive” defendant was more likely to get a light sentence than the “unat-
tractive” defendant. We would know that the “attractiveness” manipulation

CHAPTER 11 • The Advantages of Using More Than Two Values of an Independent Variable 393



had an effect. However, it could be that in addition to manipulating attrac-
tiveness, the researchers also manipulated perceived wealth. Thus, wealth,
rather than attractiveness, might account for the manipulation’s effect. Specif-
ically, people may be less likely to give wealthy defendants long sentences.

Because of impurities in manipulations, you often end up knowing that
the treatment manipulation had an effect, but not knowing whether the treat-
ment had an effect because it manipulated (a) the variable you wanted to
manipulate or (b) some other variable that you did not want to manipulate
(the impurity). In short, simple experiments may lack construct validity
because the independent variable manipulation is contaminated by variables
that are unintentionally manipulated along with the treatment. In technical ter-
minology, the manipulation’s construct validity is weakened by confounding
variables: variables, other than the independent variable, that may be responsi-
ble for the differences between your conditions.

The following example1 illustrates the general problem of confounded
manipulations. Imagine being in a classroom that has five light switches, and
you want to know what the middle light switch does. Assume that in the
“control” condition, all the light switches are off. In the “experimental” con-
dition, you want to flick the middle switch. However, because it is dark, you
accidentally flick on the middle three switches. As the lights come on, the jan-
itor bursts into the room, and your “experiment” is finished. What can you
conclude?

You can conclude that your manipulation of the light switches had an
effect. That is, your study has internal validity. But, because you manipulated
more than just the middle light switch, you can’t say that you know what the
middle light switch did. Put another way, if you were to call your manipula-
tion a “manipulation of the middle switch,” your manipulation would lack
construct validity.

Because of confounding variables, it is often hard to know what it is
about the treatment that caused the effect. In real life, variables are often con-
founded. For example, your friend may know she got a hangover from drink-
ing too much wine, but not know whether it was the alcohol in the wine, the
preservatives in the wine, or something else about the wine that produced the
awful sensations. A few years ago, a couple of our students joked that they
could easily test the hypothesis that alcohol was responsible. All they needed
us to do was donate enough money to buy mass quantities of a pure manipu-
lation of alcohol—180 proof, totally devoid of impurities. These students
understood how confounding variables can contaminate real-life manipula-
tions—and how confounding variables can make it hard to know what it
was about the manipulation that caused the effect.

Having a multiple-group experiment can allow you to know what it is
about the source that causes a treatment’s effect. For example, if you wanted
to look at the effects of cell phones on driving behavior, you could have a no
cell phone group, a cell phone group, and a cell phone with headset group.
By comparing the regular cell phone group to the headset group, you might
be able to see whether reaching for the phone was a source of the cell phone
users’ driving problems (Strayer & Drews, 2008). To see how having more

1We are indebted to an anonymous reviewer for this example and other advice about confound-
ing variables.
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than two groups has helped researchers track down the source of a treat-
ment’s effect, consider the following examples.

● Gesn and Ickes (1999) found that participants who saw a video of
another person did a passable job at knowing what that person was
thinking. But why? Was it the person’s words—or was it their nonverbal
signals? To find out, Gesn and Ickes compared one group that heard only
the words (audio only) to another group that got only the nonverbal sig-
nals. (The nonverbal group saw video of the person accompanied by a
filtered sound track that allowed participants to hear the pitch, loudness,
and rhythm of the person’s speech, but not the actual words.) Gesn and
Ickes found that the words, rather than nonverbal signals, were what
helped participants figure out what the person was thinking. Specifically,
whereas the audio-only group did nearly as well as the normal video
group, the video with filtered audio group did very poorly.

● Langer, Blank, and Chanowitz (1978) had their assistant get into lines to
use the copier and then ask one of three questions:

1. Can I cut in front of you?
2. Can I cut in front of you because I’m in a rush?
3. Can I cut in front of you because I want to make a copy?
The researchers found that 60% of participants in the no-excuse condi-
tion let the assistants cut in front, 94% of the participants in the good-
excuse condition let the assistants cut in, and 93% of the participants in
the poor-excuse condition let the assistants cut in front of them. By hav-
ing both a no-excuse control group and a good-excuse control group, the
researchers were able to establish that it was (a) important to have an
excuse but (b) the quality of the excuse was unimportant.

● In the false memory study we discussed earlier, Loftus (1975) included a
control group who, like the experimental group, was asked questions
about objects that weren’t in the film, but who, unlike the experimental
group, were not asked questions that implied that those objects were in the
film (e.g., the control group might be asked “Did you see a red stop sign?”
whereas the experimental group would be asked, “Did you see the red
stop sign?”). The fact that this control group did not have false memories
allowed Loftus to discover that the false memories in the leading question
condition were caused by suggesting that the object was present—and not
by the mere mention of the false object.

● Lee, Frederick, and Ariely (2006) found that people told that they were
about to drink some beer that had vinegar added to it rated the beer
more negatively than participants not told about the vinegar. One possi-
bility for this finding is that participants merely obeyed demand charac-
teristics: Participants might expect that the experimenter wanted them to
give low ratings to vinegar-tainted beer. Fortunately, Lee et al. were able
to rule out this possibility because they had a control group that was told
about the vinegar after tasting the beer—and that “after” group rated the
beer as positively as the group that didn’t know about the vinegar. Con-
sequently, the researchers were able to conclude that knowing about the
vinegar beforehand changed how the beer tasted to participants.
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● Baumeister, DeWall, Ciarocco, and Twenge (2005) found that partici-
pants believing they would spend the future alone exhibited less self-
control than participants believing they would spend the future with
friends. However, this finding could mean either that social rejection
leads to less self-control or that expecting unpleasant outcomes leads to
less self-control. Therefore, Baumeister et al. added a control group of
participants who were led to expect an unpleasant, injury-riddled future.
That “misfortune” group did not experience a loss of self-control, sug-
gesting that it was rejection, not negative events, that caused the lowered
self-control.

To understand how confounding variables can contaminate a simple
experiment, let’s go back to the simple experiment on the effects of exercise
that we proposed earlier in this chapter. You will recall that the experimental
group got 100 minutes of exercise class per day, whereas the control group
got nothing. Clearly, the experimental group participants were treated differ-
ently from the control group participants. The groups didn’t differ merely in
terms of the independent variable (exercise). They also differed in terms of
several other (confounding) variables: The exercise group received more
attention and had more structured social activities than the control group.

Hypothesis-Guessing in Simple Experiments. Furthermore, participants in the
experimental group knew they were getting a treatment, whereas participants
in the control group knew they were not receiving any special treatment. If
experimental group participants suspected that the exercise program should
have an effect, the exercise program may appear to have an effect—even if
exercise does not really improve mood. In other words, the construct validity
of the study might be ruined because the experimental group participants
guessed the hypothesis (hypothesis-guessing).

Because of the impurities (confounding variables) of this exercise
manipulation, you cannot say that the difference between groups is due to
exercise by itself. Although all manipulations have impurities, this study’s
most obvious—and avoidable—impurities stem from having an empty
control group: a group that gets no treatment, not even a placebo (a placebo
is a treatment that doesn’t have an effect, other than possibly by changing a
participants’ expectations). Thus, if you chose to use a placebo control
group instead of the empty control group, you could reduce the impact of
confounding variables.

Increasing Validity Through Multiple Control Groups
Choosing the placebo control group over the empty control group does, how-
ever, often come at a cost. Often, it would be better to have both control
groups.

To see how hard it can be to choose between an empty control group and
a placebo group, consider the studies comparing the effect of antidepressant
drugs to the effect of a placebo. If those simple experiments had compared
groups getting antidepressants to empty control groups, those studies would
have grossly overestimated the effectiveness of antidepressant drugs (Kirsch,
Moore, Scoboria, & Nicholls, 2002). However, because those studies did not
use empty control groups, they don’t tell us the difference between getting the
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drug and receiving no treatment. Given that patients will be choosing
between drug treatment and no drugs (Moerman, 2002), the lack of an
empty control group is a problem. It would have been nice to have compared
the antidepressant group to both an empty control group as well as to a pla-
cebo group.

The Value of a Placebo Group. To take another example of the difficulty of
choosing between a placebo group and an empty control group, let’s go back
to the problem of examining the effects of exercise on mood. If you use an
empty control group that has nothing done to its participants, interpreting
your results may be difficult. More specifically, if the exercise group does bet-
ter than this “left alone” group, the results could be due to hypothesis-
guessing (e.g., participants in the exercise condition figuring out that exercise
should boost their mood) or to any number of confounding variables (such as
socializing with other students in the class, being put into a structured rou-
tine, etc.).

If, on the other hand, you use a placebo-treatment group (for example,
meditation classes), you would control for some confounding variables. For
example, both your treatment and placebo groups would be assigned to a
structured routine. Now, however, your problem is that you only know how
the treatment compares to the placebo: You do not know how it compares to
no treatment. Consequently, you won’t know what the treatment’s effect is.

The Value of an Empty Control Group: “Placebos” May Not Be Placebos. You
won’t know what the effect of your treatment is because you do not know
what the effect of your placebo treatment is. Ideally, you would like to believe
that your placebo treatment has no effect. In that case, if the treatment group
does worse than the placebo group, the treatment is harmful; if the treatment
group does better, the treatment is helpful.

If, however, what you hope is a purely placebo treatment turns out to be
a treatment that really does have an effect, you are going to have trouble
evaluating the effect of your treatment. For example, suppose you find that
the exercise group is more depressed than the meditation group. Could you
conclude that exercise increases depression? No, because it might be that
although exercise reduces depression, meditation reduces it more. Conversely,
if you found that the exercise group is less depressed than the meditation
group, you could not automatically conclude that exercise decreases depres-
sion. It may be that meditation increases depression greatly, and exercise
increases depression only moderately: Exercise may merely be the lesser of
two evils.

To find out whether exercise increases or decreases depression, you need
to compare the exercise group to a no-treatment group. Thus, if you were
interested in the effects of exercise on depression, you have two options:
(1) Use a simple experiment and make the hard choice between an empty
control group and a placebo group, or (2) use a multiple-group experiment
so that you can include both an empty and a placebo control group.

Using Multiple Imperfect Control Groups to Compensate for Not Having the Perfect
Control Group. Even if you are sure you do not want to use an empty control
group, you may still need more than one control group because you
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will probably not have the perfect control group. Instead, you may have sev-
eral groups, each of which controls for some confounding variables but not
for others. If you were to do a simple experiment, you may have to decide
which of several control groups to use. Choosing one control group—when
you realize you need more than one—is frustrating. It would be better to be
able to use as many as you need.

But how often do you need more than one control group? More often
than you might think. In fact, even professional psychologists sometimes
underestimate the need for control groups. Indeed, many professional
researchers get their research articles rejected because a reviewer concluded
that they failed to include enough good control groups (Fiske & Fogg,
1990).

You often need more than one control group so that your study will have
adequate construct validity. Even with a poor control group, your study has
internal validity: You know that the treatment group scored differently than
the control group. But what is it about the treatment that is causing the
effect? Without good control group(s), you may think that one aspect of
your treatment (the exercise) is causing the effect, when the difference is really
due to some other aspect of your treatment (the socializing that occurs during
exercise).

To illustrate how even a good control group may still differ from the
experimental group in several ways having nothing to do with the indepen-
dent variable, consider the meditation control group. The meditation control
group has several advantages over the empty control group. For example, if
the exercise group was less depressed than a meditation control group, we
could be confident that this difference was not due to hypothesis-guessing,
engaging in structured activities, or being distracted from worrisome thoughts
for awhile. Both groups received a “treatment,” both engaged in structured
activities, and both were distracted for the same length of time.

The groups, however, may differ in that the exercise group did a more
social type of activity, listened to louder and more upbeat music, and inter-
acted with a more energetic and enthusiastic instructor. Therefore, the exer-
cise group may be in a better mood for at least three reasons having nothing
to do with exercise: (1) the social interaction with their exercise partners,
(2) the upbeat music, and (3) the upbeat instructor.

To rule out all these possibilities, you might use several control groups.
For instance, to control for the “social activity” and the “energetic model”
explanations, you might add a group that went to a no-credit acting class
taught by an enthusiastic professor. To control for the music explanation,
you might add a control group that listened to music or perhaps even
watched aerobic dance videos. By using all of these control groups, you may
be able to rule out the effects of confounding variables.

ANALYZING DATA FROM MULTIPLE-GROUP EXPERIMENTS
You have just learned that multiple control groups may give you more con-
struct validity than one control group. Earlier, you learned that multiple treat-
ment groups allow you to more accurately map the functional relationship
between the independent variable and the dependent variable than a two-
group experiment. Before that, you learned that the multiple-group
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experiment allows you to compare more treatments at one time than a two-
group experiment. In short, you have learned that there are at least three
good reasons to conduct a multiple-group experiment instead of a simple
experiment:

1. to improve construct validity
2. to map functional relationships
3. to compare several treatments at once

However, before you conduct a multiple-group experiment, you should
understand how it will be analyzed because the way that it will be analyzed
has implications for (a) what treatment groups you should use, (b) how many
participants you should have, and even (c) what your hypothesis should be.

Even if you never conduct a multiple-group experiment, you will read
articles that report results of such experiments. To understand those articles,
you must understand the logic and vocabulary used in analyzing them.

Analyzing Results From the Multiple-Group Experiment:
An Intuitive Overview
As a first step to understanding how to analyze the results of multiple-group
experiments, let’s look at data from three experiments that compared the
effects of no-treatment, meditation, and aerobic exercise on happiness. All of these
experiments had 12 participants rate their feelings of happiness on a 0-to-100 (not
at all happy to very happy) scale. Here are the results of Experiment A:

NO-TREATMENT MEDITATION EXERCISE

50 51 53

51 53 53

52 52 54

51 52 52

Group Means 51 52 53

Compare these results to the results of Experiment B:

NO-TREATMENT MEDITATION EXERCISE

40 60 78

42 60 82

38 58 80

40 62 80

Group Means 40 60 80
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Are you more confident that Experiment A or Experiment B found a sig-
nificant effect for the treatment variable? If you say B, why do you give B as
your answer? You answer B because there is a bigger difference between the
groups in Experiment B than in Experiment A. That is, the group means for
Experiment B are further apart than the group means for Experiment A.
Group B’s means being further apart—what statisticians call greater variability
between group means—lead you to think that Experiment B is more likely to
be the study that obtained significant results for two reasons.

First, you intuitively realize that to find a treatment effect, you need between-
group variability. After all, if the between-group variability was zero (indicating
that the means of the exercise group, the no-treatment group, and the meditation
group were all the same), you couldn’t argue that the treatment had an effect.

Second, you intuitively realize a small difference between group means
might easily be due to chance (rather than to the treatment), but a larger dif-
ference is less likely to be due to chance.2 Thus, you realize that the more var-
iability there is between group means, the more likely it is that at least some
of that variability is due to treatment.

Now, compare Experiment B with Experiment C. Here are the results of
Experiment C:

EXERCISE NO-TREATMENT MEDITATION

10 10 100

80 90 80

60 60 60

10 80 80

Group Means 40 60 80

Which experiment do you think provides stronger evidence of a treatment
effect—Experiment B or Experiment C? Both experiments have the same
amount of variability between group means. Therefore, unlike in our first
example, you cannot use the rule of choosing the experiment with the means
that differ the most to choose Experiment B. Yet, once again, you will pick
Experiment B. Why?

You will pick Experiment B because you are concerned about one aspect
of Experiment C: the extreme amount of variability within each group. You
realize the only reason scores within a group vary is random error. (If partici-
pants in the same treatment group get different scores, those different scores
can’t be due to the treatment. Instead, the differences in scores must be due
to nontreatment variables, such as individual differences. In a randomized
experiment, such nontreatment variables become random error.) Thus, you
see that Experiment C is more affected by random error than Experiment B.

2Similarly, if your favorite team lost by one point, you might blame luck. However, if your team
lost by 30 points, you would be less likely to say that bad luck alone was responsible for the
defeat.

400 CHAPTER 11 • Expanding the Simple Experiment



The large amount of random error in Experiment C (as revealed by the
within-groups variability) bothers you because you realize that this random
error—rather than the treatment—might be the reason the groups differ from
one another. That is, the same random variability that makes individual
scores within a group differ from each other might also make the group
means differ from each other.3 In Experiment B, on the other hand, the small
amount of within-group variability indicates that there is virtually no random
variability in the data. Therefore, in Experiment B, you feel fairly confident
that random error is not causing the group means to differ from one another.
Instead, you believe that the means differ from one another because of the
treatment.

Intuitively then, you understand the three most important principles
behind analyzing the results of a multiple-group experiment. Specifically, you
realize the following:

1. Within-groups variability is not due to the treatment, but instead is due to
random error. That is, differences within a treatment group can’t be due to
the treatment because everyone in the group is getting the same treatment.
Instead, differences among group members must be due to random factors
such as individual differences and random measurement error.

2. Between-groups variability is not a pure measure of treatment effects.
Admittedly, if the treatment has an effect, the means of groups getting
different levels of treatment should differ from one another. However,
even if the treatment has no effect, the group means will probably still
differ from one another because of random error. Thus, between-group
variability is affected by both random error and treatment effects.

3. If you compare between-group variability (the effects of random error
plus any treatment effects) to within-group variability (the effects of ran-
dom error alone), you may be able to determine whether the treatment
had an effect.

Analyzing Results From the Multiple-Group Experiment:
A Closer Look
You now have a general idea of how to analyze data from a multiple-group
study. To better understand the logic and vocabulary used in these analyses—
a must if you are to understand an author’s or a computer’s report of such an
analysis—read the next few sections.

Within-Groups Variability: A Pure Measure of Error
As you already know, within-groups variability does not reflect the effects of
treatment. Instead, it reflects the effects of random error. For example,
because all the participants in the meditation group are getting the same

3To get a sense of how random sampling error might cause the group means to differ, randomly
sample two scores from the no-treatment group (scores are in the table on page 400). Compute
the mean of this group. If you do this several times, you will get different means. These different
means can’t be due to a treatment effect because none of the participants in any of your samples
are receiving the treatment. The reason you are getting different means even though you are
sampling the same group is random sampling error. Fortunately, statistics can help us determine
how likely it is that the differences among group means are entirely due to random error.
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treatment (meditation), any differences among those participants’ scores can’t
be due to the treatment. Instead, the differences among scores of meditation
group participants are due to such random factors as individual differences,
unreliability of the measure, and lack of standardization. Similarly, differences
among the scores of participants in the no-treatment group are due not to
treatment, but to irrelevant random factors. The same is true for differences
within the exercise group. Thus, calculating within-groups variability will tell
us the extent to which chance causes individual scores to differ from each
other.

To measure this within-groups variability, we first look at the variability
of the scores within each group. To be more specific, we calculate an index
of variability called the variance. If we have three groups, we could calculate
the variance within each group. Each of these three within-group variances
would be an estimate of the extent to which the groups could differ due to
random error alone. However, we do not need three different estimates of
random error—we just need one good one. To end up with one estimate of
variability due to random error, we average all three within-group variances
to come up with the best estimate of random variability—the within-groups
variance.

Fortunately, we can use this estimate of how much random error causes
individual scores to differ from each other to estimate the extent to which
random error is likely to cause group means to differ from each other. Partly
because this within-groups variance gives us an index of the degree to which
random error alone may cause your group means to differ, within-groups
variance is often referred to as error variance.

Between-Groups Variability: Error Plus (Possibly) Treatment
Once you have an index of the degree to which your groups could vary from
each other due to chance alone (the within-groups variance), the next step is
to get an index of the degree to which your groups actually vary from one
another. It is at this step where it becomes clear that you cannot use a t test
to analyze data from a multiple-group experiment. When using a t test, you
determine the degree to which the groups differ from one another in a
straightforward manner: You subtract the average score of Group 1 from the
average score of Group 2. Subtraction works well when you want to compare
two groups, but it does not work well when you have more than two groups
because you can subtract only two scores at a time. So, if you have three
groups, which two groups do you compare? Group 1 with Group 2? Or,
Group 2 with Group 3? Or, Group 1 with Group 3?

You might answer this question by saying “all of the above.” You are
saying that, with three groups, you would do three t tests: one comparing
Group 1 against Group 2, a second comparing Group 1 against Group 3,
and a third comparing Group 2 against Group 3. However, that’s not
allowed!

An analogy will help you understand why you cannot use multiple t tests.
Suppose a stranger comes up to you with a proposition: “Let’s bet on coin
flips. If I get a ‘head,’ you give me a dollar. If I don’t, I give you a dollar.”
You agree. He then proceeds to flip three coins at once and then makes you
pay up if even one of the coins comes up heads. Why is this unfair? This is
unfair because he misled you: You thought he was going to flip only one
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coin at a time, so you thought he had only a 50% chance of winning. But
because he’s flipping three coins at a time, his chances of getting at least one
head are much better than 50%.4

When you do multiple t tests, you are doing basically the same thing as
the coin hustler. You start by telling people the odds that a single t test will
be significant due to chance alone. For example, if you use conventional sig-
nificance levels, you would tell people that if the treatment has no effect, the
odds of getting a statistically significant result for a particular t test are less
than 5 in 100. In other words, you are claiming that your chance of making
a Type 1 error is no more than 5%.

Then, just as the hustler gave himself more than a 50% chance of win-
ning by flipping more than one coin, you give yourself a more than 5%
chance of getting a statistically significant result by doing more than one t
test. The 5% odds you quoted would hold only if you had done a single t
test. If you are using t tests to compare three groups, you will do three t
tests, which means the odds of at least one turning out significant by chance
alone are much more than 5%.5

So far, we’ve talked about the problems of using a t test when you have a
three-group experiment. What happens if your experiment has more than
three groups? Then, the t test becomes even more deceptive (just as the coin
hustler would be cheating even more if he flipped more than three coins at a
time). The more groups you use in your experiment, the greater the difference
between the significance level you report and the actual odds of at least one t
test being significant by chance (Hays, 1981).

To give you an idea of how great the difference between your stated sig-
nificance level and the actual odds can be, suppose you had six levels of the
independent variable. To compare all six groups with one another, you
would need to do 15 t tests. If you did that and used a .05 significance level,
the probability of getting at least one significant effect by chance alone would
be more than 50%: Your risk of making a Type 1 error would be 10 times
greater than you were claiming it was!

As you have seen, the t test is not useful for analyzing data from the
multiple-group experiment because it measures the degree to which groups
differ (vary) by using subtraction—and you can only subtract two group
averages at a time. To calculate the degree to which more than two group
means vary, you need to calculate a variance between those means.

The between-groups variance indicates the extent to which the group
means vary (differ). Thus, if all your groups have the same mean, between-
groups variance would be zero because there would be no (zero) differences
between your group means. If, on the other hand, there are large differences
between the group means, between-group variance will be large.

So, the size of the between-groups variance depends on the extent to
which the group means differ. But what affects the extent to which the group
means differ? As you saw earlier, there are two factors.

One factor is random error. Even if the treatment has no effect, random
error alone will almost always cause differences between the group means.

4To be more precise, his chances of getting at least one head are 87.5%.
5To be more precise, your chances are 14.26%.
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If the experiment uses an unreliable measure, few participants, and poorly
standardized procedures, random error alone may cause large differences
between the group means. If the experiment uses a reliable measure, many
participants, and highly standardized procedures, random error alone would
tend to cause smaller differences between the group means. In short, when
there is no treatment effect, the groups will still differ from each other due to
random error. To be more specific, when there is no treatment effect,
between-groups variance should be roughly equivalent to a more direct mea-
sure of random error: within-groups variance.

The other factor that may affect the extent to which the groups differ
from each other is the treatment effect. If the treatment has an effect, the dif-
ferences between the group means should be greater than when the treatment
doesn’t have an effect. Because of the treatment effect’s influence on the size
of the between-groups variance, the between-groups variance is often called
treatment variance.

To recap, when there is a treatment effect, the between-group variance is
the sum of two quantities: an estimate of random error plus an estimate of
treatment effects. Therefore, if the treatment has an effect, between-groups
variance (which is affected by the treatment plus random error) will be larger
than the within-groups variance (which is affected only by random error).

Comparing Between-Groups Variance to Within-Groups Variance: Are the
Differences Between Groups Due to More Than Random Error?
Once you have the between-groups variance (an estimate of random error
plus any treatment effects) and the within-groups variance (an estimate of
random error), the next step is to compare the two variances. If the between-
groups variance is larger than the within-groups variance, some of the
between-groups variance may be due to a treatment effect. The statistical
analysis that allows you to compare the between-groups variance to the
within-groups variance and thereby determine whether the treatment had an
effect is called analysis of variance (ANOVA).

When doing an ANOVA, you compare two variances by dividing the
between-groups variance by the within-groups variance. That is, you set up
the following ratio:

Between-Groups Variance

Within-Groups Variance

Instead of using the term variance, you are more likely to see the term
mean square. Thus, you are more likely to read about authors setting up the
following ratio:

Mean Square Between Groups

Mean Square Within Groups

Note that authors tend to leave off the word groups. As a result, you are
likely to see the ratio described as

Mean Square Between

Mean Square Within

404 CHAPTER 11 • Expanding the Simple Experiment



To shorten the expression even further, authors tend to abbreviate Mean
Square as MS, Mean Square Between as MSB, and Mean Square Within as
MSW. Therefore, you are likely to see the ratio of the variances described as

MSB

MSW

To complicate things further, authors may not use the terms between or
within. Rather than use a name that refers to how these variances were calcu-
lated (looking at differences between group means for MS between and look-
ing at differences within groups for MS within), authors may instead use a
name that refers to what these variances estimate. Thus, because between-
groups variance is, in part, an estimate of treatment effects, authors may refer
to mean square between as mean square treatment (abbreviated MST). Simi-
larly, because within-groups variance is an estimate of the degree to which
random error is affecting estimates of the treatment group means, authors
may refer to mean square within as mean square error (abbreviated MSE).

Regardless of what names or abbreviations authors give the two var-
iances, the ratio of the between-groups variance to the within-groups variance
is called the F ratio. Consequently, the following three ratios are all F ratios:

MST

MSE

MS Treatment

MS Error

MSB

MSW

In ANOVA summary tables, terms are shortened even more. Thus, when
scanning computer printouts or when reading articles, you may see tables
resembling the one below:

SOURCE MEAN SQUARE F

Treatment 10 2

Error 5

Why an F of 1 Does Not Show That the Treatment Had an Effect. Conceptually,
the F ratio can be portrayed as follows:

F
Random Error Possible Treatment Effect

Random Error

By examining this conceptual formula, you can see that the F ratio will
rarely be much less than 1. To illustrate, imagine that the null hypothesis is
true: There is no (zero) treatment effect. In that case, the formula is (random
error þ 0)/random error, which reduces to random error/random error. As
you know, if you divide a number by itself (e.g., 5/5, 8/8), you get 1.6

6The only exception is that 0/0 ¼ 0.
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You now know that if the null hypothesis were true, the F ratio would be
approximately 1.00.7 That is,

F 1.00
Random Error

Random Error

Random Error 0

Random Error

But what would happen to the F ratio if the treatment had an effect? To
answer this question, let’s look at what a treatment effect would do to the top
and the bottom half of the F ratio.

If the treatment has an effect, the top of the F ratio—the between-groups
variance—should get bigger. Not only is the between-groups variance affected
by random error (as it was when the treatment did not have an effect), but
now that the treatment is also making the group means differ, between-
groups variance is also influenced by the treatment.

We just explained that a treatment effect increases the top of the F ratio,
but what does a treatment effect do to the bottom of the F ratio? Nothing.
Regardless of whether there is a treatment effect, the bottom of the F ratio,
the within-groups variance, always represents only random error: With or
without a treatment effect, a group’s scores differ from one another solely
because of random error.

Let’s now use our knowledge of how treatment effects influence the top
and bottom parts of the F ratio to understand how treatment effects influence
the entire F ratio. When there is a treatment effect, the differences between
group means are due not only to random error (the only thing that affects
within-groups variance) but also to the treatment’s effect. Consequently,
when there is a treatment effect, the between-groups variance (an index of
random error plus treatment effect) should be larger than the within-groups
variance (an index of random error alone). Put more mathematically, when
there is a treatment effect, you would expect the ratio of between-groups var-
iance to within-groups variance to be greater than 1. Specifically,

F 1,
Between-Groups Variance (Treatment Random Error)

Within-Groups Variance (Random Error)

when the treatment has an effect.

Using an F Table. Not all Fs above 1.00 are statistically significant, however.
To determine whether an F ratio is enough above 1.00 to indicate that there
is a significant difference between your groups, you need to consult an F
table, like the one in Appendix F.

Calculating Degrees of Freedom. To use the F table, you need to know two
degrees of freedom: one for the top of the F ratio (between-groups variance,

7 If you get an F below 1.00, it indicates that you have found no evidence of a treatment effect.
Indeed, in the literature, you will often find statements such as, “There were no other significant
results, all Fs < 1.” If you get an F substantially below 1.00, you may want to check to be sure
you did not make a computational error. If your F is negative, you have made a computational
error: F can’t be less than 0.
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MS treatment) and one for the bottom of the F ratio (within-groups variance,
MS error).

Calculating the degrees of freedom for the top of the F ratio (between-
groups variance) is simple. It’s just one less than the number of values of the
independent variable. So, if you have three values of the independent variable
(no-treatment, meditation, and exercise), you have 2 (3–1) degrees of free-
dom. If you had four values of the independent variable (e.g., no-treatment,
meditation, archery, aerobic exercise), you would have 3 (4–1) degrees of
freedom. Thus, for the experiments we have discussed in this chapter, the
degrees of freedom for the between-groups variance equals the number of
groups–1.

Computing the degrees of freedom for the bottom of the F ratio (within-
groups variance) is also easy. The formula is N (number of participants)–G
(groups). Thus, if there are 20 participants and 2 groups, the degrees of free-
dom ¼ 18 (20–2 ¼ 18).8

Let’s now apply this formula to some multiple-group experiments. If we
have 33 participants and 3 groups, the df for the error term ¼ 30 (because
33–3 ¼ 30). If we had 30 participants and 5 groups, the df error would ¼
25 (because 30–5 ¼ 25). To repeat, the simplest way of computing the error
df for the experiments we discussed in this chapter is to use the formula N–

G, where N ¼ total number of participants and G ¼ total number of groups
(see Table 11.1).

Once you know the degrees of freedom, find the column in the p < .05 F
table (Table 3 of Appendix F) that corresponds to those degrees of freedom.
If your F ratio is larger than the value listed, the results are statistically signif-
icant at the p < .05 level.

Making Sense of an ANOVA Summary Table or Computer Printout. Usually, you
will not have to look up F values in an F table. Instead, you will have a com-
puter calculate F and look it up in a table for you. However, if you had a
computer calculate F for you, you should make sure that the degrees of free-
dom on the printout are correct. If not, the computer has misunderstood your
design or you have miscoded some data. If you had a computer calculate F

TABLE 11.1
Calculating Degrees Of Freedom

SOURCE OF VARIANCE (SV) CALCULATION OF DF

Treatment (between groups) Number of Groups–1 (G–1)

Within subjects (error variance) Number of participants
minus number of groups
(N–G)

Total N–1

8As you may recall, you could have used this N–G formula to get the degrees of freedom for the
t test described in Chapter 10. However, because the t test always compares 2 groups, people
often memorize the formula N–2 for the t test instead of the more general formula N–G.
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for you, the computer might provide you with an analysis of variance
(ANOVA) summary table like this one:

SOURCE OF VARIANCE SUM OF SQUARES (SS) df MS F p

Treatment (between) 88 2 44 44 <.05

Error (within) 12 12 1

Total 100 14

The first column, the source of variance column, may sometimes have
only the heading “Source.” The two main sources of variance will be your
treatment (which may be labeled as “Treatment,” “Between groups,” “BG,”
“Groups,” “Between,” “Model,” or the actual name of your independent
variable) and random error (which may be labeled as “Error,” “Within
groups,” “WG,” or “Within”).

The second column, the sum of squares column, may be labeled “Sum of
Squares,” “SS,” or “Type III Sum of Squares.” Note that if you add the sum
of squares treatment to the sum of squares error, you will get the sum of
squares total.

The third column, the degrees of freedom column, is often abbreviated
df. As we mentioned earlier, you should check the df column to make sure
that the analysis is based on the right number of treatment groups and the
right number of participants. From the df column in our ANOVA table, we
know two things. First, because the formula for the df treatment is G–1
and because the treatment df is 2, we know that a three-group ANOVA
has been calculated (because 3 [groups]–1 ¼ 2 [df]). Second, because the
formula for total df is N–1 (number of participants–1) and because the
total df is 14, we know that the ANOVA is based on data from 15 partici-
pants (because 15 [participants]–1 ¼ 14 [df]).

The fourth column, the Mean Square column, is often abbreviated MS.
The MS Treatment will be the SS Treatment divided by the df Treatment.
Note that if the MS Treatment is not bigger than MS Error, the results will
not be statistically significant.

The fifth column contains the F ratio. The F ratio is the MS Treatment
divided by MS Error. In the table above F is 44 because 44 (MST) divided
by 1 (MSE) ¼ 44.

The sixth column, the p value column, tells you how likely it would be to
get differences between the groups this large or larger if the null hypothesis
(the null hypothesis is that the treatment has no effect) were true. In this
case, p is less than .05, suggesting that it is unlikely that you would obtain
these results if the null hypothesis were true. Traditionally, such results
would be called “statistically significant.” An author might start to summa-
rize the results of such an ANOVA by writing, “Consistent with the hypothe-
sis, the treatment had an effect, F(2, 12) ¼ 44, p < .05.”

The Meaning of Statistical Significance in ANOVA
If your results are statistically significant, what does that mean? Statistical sig-
nificance means that you can reject the null hypothesis. In the multiple-group
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experiment, the null hypothesis is that the differences among all your group
means are due to chance. That is, all your groups are essentially the same.
Rejecting this hypothesis means that, because of treatment effects, all your
groups are not the same. In other words, you can conclude that at least two
of your groups differ. However, such significant results raise two questions.

The first question is, “How large is the effect?” One way to get an esti-
mate of the effect size is simply to look at the differences between the means.
For example, looking at such differences suggests that the effect of antidepres-
sants on relieving depression is only to increase scores by 2 points on a 50-
point scale (Kirsch, Moore, Scoboria, & Nicholls, 2002). Another strategy is
to compute eta squared (�2): an estimate of effect size that ranges from 0 to
1 and is comparable to r squared.9

Computing eta squared from an ANOVA summary table is simple: Just
divide the Sum of Squares Treatment by the Sum of Squares total. For exam-
ple, in our ANOVA table, SS treatment was 88 and SS total was 100; there-
fore, eta squared was .88 (because 88/100 ¼ .88)—indicating an extremely
large effect. Thus, an author might start to describe such results by writing,
“Consistent with the hypothesis, the treatment had an effect, F(2, 12) ¼ 44,
p < .05, �2 ¼ 0.88.” Note that you would normally not get such a large eta
squared. Indeed, social scientists tend to view any eta squared (or r squared)
of .25 or above to be large (.09 to .25 is considered moderate; less than .09
is considered small).

The second question is, “Which groups differ from each other?” Even in
a three-group experiment, there are several possibilities: Group 1 might differ
from Group 2, and/or Group 2 might differ from Group 3, and/or Group 1
might differ from Group 3. As we just said, a significant F does not tell you
which groups differ. Therefore, once you have performed an F test to deter-
mine that at least some of your groups differ, you need to do additional tests
to determine which of your groups differ from one another.

Beyond ANOVA: Pinpointing a Significant Effect
You might think that all you would have to do to determine which groups
differ is compare group means. Some group means, however, may differ
from others solely due to chance. To determine which group differences are
due to treatment effects, you need to do additional tests. These additional,
more specific tests are called post hoc t tests.

Post Hoc t Tests Among Group Means: Which Groups Differ? At this point, you
may be saying that you wanted to do t tests all along. Before you complain to
us, please hear our two-pronged defense.

First, you can go in and do post hoc tests only after you get a significant
F. That is, you can’t legitimately use follow-up tests to ask “which of the
groups differ” until you first establish that at least some of the groups do
indeed differ. To do post hoc tests without finding a significant F is consid-
ered statistical malpractice. Such behavior would be like a physician doing a

9To learn about r squared, review our section titled “Coefficient of Determination” in
Chapter 7, Box 10.2 in Chapter 10, or look at Appendix E.
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specific test to find out which strain of hepatitis you had after doing a general
test that was negative for hepatitis. At best, the test will not turn up anything,
and your only problem will be the expense and pain of an unnecessary test.
At worst, the test results will be misleading because the test is being used under
the wrong circumstances. Consequently, you may end up being treated for a hep-
atitis you do not have. Analogously, a good researcher does not ask which
groups differ from one another unless the more general, overall analysis of
variance test has first established that at least some of the groups do indeed
differ.10

Second, post hoc tests are not the same as conventional t tests. Unlike
conventional t tests, post hoc t tests are designed to correct for the fact that
you are doing more than two comparisons. As we mentioned earlier, doing
more than one t test at the p ¼ .05 level and claiming that you have only a
5% risk of making a Type 1 error is like flipping more than one coin at a
time and claiming that the odds of getting a “heads” are only 50%. In both
cases, the odds of getting the result you hope for are much greater than the
odds you are stating. Thus, we cannot simply do an ordinary t test. Instead,
we must correct for the number of comparisons we are making. Post hoc t
tests take into consideration how many tests are being done and make the
necessary corrections.

At this point, we will not require you to know how to do post hoc tests.
(If you want to know how to conduct a post hoc test, see Appendix F.) You
should, however, be aware that if you choose to do a multiple-group experi-
ment, you should be prepared to do post hoc analyses.

You should also be aware that if you read a journal article describing the
results of a multiple-group experiment, you may read the results of post hoc
tests. For example, you may read about a Bonferroni t test, Tukey test,
Scheffe test, Dunnett test, Newman-Keuls test, Duncan, or an LSD test.
When reading about the results of such tests, do not panic: The author is
merely reporting the results of a post hoc test to determine which means dif-
fer from one another.

Post Hoc Trend Analysis: What Is the Shape of the Relationship? Rather than
wanting to know which particular groups differ from one another, you may
want to know the shape of the functional relationship between the indepen-
dent and dependent variables so that you could either (a) better generalize to
levels of the treatment that were not tested or (b) test a theory that predicts a
certain functional relationship. If you want to know the shape of the func-
tional relationship, instead of following up a significant main effect with post

10Although everyone agrees that you need to do an ANOVA before doing a post hoc t test, not
everyone agrees that you need to do an ANOVA before doing other tests. Indeed, Robert
Rosenthal (1992) argued that researchers should almost never do the general, overall F test.
Instead, he argued that if you have specific predictions about which groups differ, you should do
normal t tests to compare those group means. Those t tests are often called “planned compari-
sons” because the researcher planned to make those comparisons before collecting data. Planned
comparisons involving t tests are sometimes also called “a priori t tests” (“a priori” means in
advance) to emphasize that the t tests were done before peeking at the data. Sometimes, planned
comparisons will be called “planned contrasts.” One planned contrast that you will see when the
researcher is trying to determine whether the two experimental groups differ from the control
group or whether the two control groups differ from the experimental group is the “two vs.
one” contrast.

410 CHAPTER 11 • Expanding the Simple Experiment



hoc tests between group means, follow up the significant effect with a post
hoc trend analysis.

But why should you do a trend analysis to determine the shape of the
functional relationship between your independent and dependent variables?
Can’t you see this relationship by simply graphing the group means? Yes and
no. Yes, graphing your sample’s means allows you to see the pattern in the
data produced by your experiment. No, graphing does not tell you that the
pattern you observe represents the true relationship between the variables
because your pattern could be due to random error (e.g., if even one mean is
thrown off by random error, that one misplaced mean could make a linear
relationship look nonlinear). Just as you needed statistics to tell you if the dif-
ference between two groups was significant (even though you could easily see
whether one mean was higher than the other), you need statistics to know if
the pattern you observe in your data (a straight line, a curved line, a combi-
nation of a curve and a straight line, etc.) would occur if you repeated the
experiment. The statistical test you need to determine whether the pattern in
your data reflects a reliable functional relationship is a post hoc trend
analysis.

Computing a post hoc trend analysis is easy. You can either follow the
simple directions in Appendix F or use a computer program that does the
analysis for you. Although you might be tempted to forget about post hoc
trend analysis until it comes time to analyze your data, don’t make that
mistake.

If you do not think about post hoc trend analysis when designing your
experiment, you will probably be unable to do a valid post hoc trend analysis
on your data. Therefore, if you think that you might want to know about the
functional relationship between the variables in your experiment, you should
keep three facts in mind before conducting that experiment (see Box 11.2).

First, to do a post hoc trend analysis, you should have selected levels of
your independent variable that increase proportionally. For example, if you
were using three levels of a drug, you would not use 5 mg, 6 mg, and 200
mg. Instead, you might use 10 mg, 20 mg, and 30 mg, or 10 mg, 100 mg,
and 1000 mg.

Second, you must have at least an interval scale measure of your depen-
dent variable. Your map of the functional relationship can’t be accurate
unless your measure of the dependent variable is to scale. If you tried to find
the relationship between the loudness of the music playing on participants’

BOX 11.2 Requirements for Conducting a Valid Post Hoc Trend Analysis

1. Your independent variable must have a statisti-
cally significant effect.

2. Your independent variable must be quantitative,
and the levels used in the experiment should
vary from one another by some constant
proportion.

3. Your dependent variable must yield interval or
ratio-scale data so that your map of the functional
relationship will be to scale.

4. The number of trends you can look for is one less
than the number of levels of your independent
variable.

CHAPTER 11 • Analyzing Data from Multiple-Group Experiments 411



personal stereos and distance walked, you would have to measure distance by
number of meters walked rather than by blocks walked (unless all your
blocks are the same length). In short, you can’t do a trend analysis if you
have ordinal or nominal data.

Third, the more levels of the independent variable you have, the more
trends you can look for. Specifically, the number of trends you can examine
is one less than the number of levels you have. If you had only two levels,
you can test only for straight lines (linear component). If you have three
groups, you can test for straight lines (linear component), and for a U-shaped
curve (quadratic component). With four levels, you can test for straight lines,
U-shaped curves, and double U-shaped lines (cubic component). Thus, if you
are expecting a double U-shaped curve, you must use at least four levels of
the independent variable.

CONCLUDING REMARKS
By using a multiple-group experiment rather than a simple experiment, you
can ask more refined questions. For example, you can go beyond asking, “Is
there an effect?” to asking “What is the nature of the functional
relationship?”

By using a multiple-group experiment rather than a simple experiment,
you can get more valid answers to your questions. For example, by using
appropriate control groups, you can learn not only that the treatment manip-
ulation worked but also why it worked.

Although adding more levels of the treatment is a powerful way to
expand the simple experiment, an even more powerful way to expand the
simple experiment is to add independent variables. As you will see in the
next chapter, adding independent variables not only increases construct and
external validity but also opens up a whole new arena of research questions.

SUMMARY
1. The multiple-group experiment is more

sensitive to nonlinear relationships than the
simple experiment. Consequently, it is more
likely to obtain significant treatment effects
and to accurately map the functional rela-
tionship between your independent and
dependent variables.

2. Knowing the functional relationship allows
more accurate predictions about the effects
of unexplored levels of the independent
variable.

3. To use the multiple-group experiment to dis-
cover the functional relationship, you should
select your levels of the independent variable
carefully, and your dependent measure must
provide at least interval scale data.

4. Multiple-group experiments may have more
construct validity than a simple experiment

because they can have multiple control
groups and multiple treatment groups.

5. To analyze a multiple-group experiment, you
first have to conduct an analysis of variance
(ANOVA). An ANOVA will produce an
F ratio.

6. An F ratio is a ratio of between-groups
variance to within-groups variance.

7. Random error will make different treatment
groups differ from each other. If the treat-
ment has an effect, the treatment will also
cause the groups to differ from each other. In
other words, between-groups variance is due
to random error and may also be due to
treatment effects. Because it may be affected
by treatment effects, between-groups variance
is often called treatment variance.
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8. Scores within a treatment group differ from
each other for only one reason: random error.
That is, the treatment cannot be responsible
for variability within each treatment group.
Therefore, within-groups variance is an esti-
mate of the degree to which random error
affects the data. Consequently, another term
for within-groups variance is error variance.

9. The F test is designed to see whether the dif-
ference between the group means is greater
than would be expected by chance. It involves
dividing the between-groups variance (an
estimate of random error plus possible treat-
ment effects) by the within-groups variance
(an estimate of random error). If the F is 1 or
less, there is no evidence that the treatment
has had an effect. If the F is larger than 1, you
need to look in an F table (under the right
degrees of freedom) to see whether the F is
significant.

10. The first degrees of freedom (between groups/
treatment) equals the number of groups
minus one, abbreviated G–1. The second
degrees of freedom (within groups/error)
equals the number of participants minus the
number of groups, abbreviated N–G. Thus, if
you had 5 groups and 40 participants, you
would look at the F table under 4 (5–1) and
35 (40–5) degrees of freedom.

11. You are most likely to get a significant F if
between-group variability is large (your
groups differ from each other) and within-
groups variability is small.

12. If you get a significant F, you know that the
groups are not all the same. If you have more
than two groups, you have to find out which
groups differ. To find out which groups are
different, do not just look at the means to see
which differences are biggest. Instead, do post
hoc tests to find out which groups are reliably
different.

13. The following table summarizes the
mathematics of an ANOVA table.

SOURCE OF

VARIANCE

(SV)

SUM OF

SQUARES

(SS)

DEGREES OF

FREEDOM

(DF)

MEAN

SQUARE

(MS) F

Treatment
(T)

SST Levels of T–1 SST/df T MST/
MSE

Error (E) SSE Participants–
Groups

SSE/df E

Total SSTþ
SSE

Participants–
1

KEY TERMS

functional relationship
(p. 387)

linear relationship (p. 388)
confounding variables

(p. 394)
hypothesis-guessing (p. 396)
empty control group (p. 396)

variability between group
means (p. 400)

within-groups variance
(p. 402)

error variance
(p. 402)

treatment variance (p. 404)

analysis of variance
(ANOVA) (p. 404)

F ratio (p. 405)
eta squared (�2) (p. 409)
post hoc tests (p. 409)
post hoc trend analysis

(p. 411)

EXERCISES
1. A researcher randomly assigns each member

of a statistics class to one of two groups. In
one group, each student is assigned a tutor

who is available to meet with the student 20
minutes before each class. The other group is
a control group not assigned a tutor.
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Suppose the researcher finds that the tutored
group scores significantly better on exams.
a. Can the researcher conclude that the

experimental group students learned
statistical information from tutoring ses-
sions that enabled them to perform bet-
ter on the exam? Why or why not?

b. What changes would you recommend in
the study?

2. Suppose people living in homes for older
adults were randomly assigned to two
groups: a no-treatment group and a tran-
scendental meditation (TM) group. Tran-
scendental meditation involves more than
sitting with eyes closed. The technique
involves both “a meaningless sound selected
for its value in facilitating the transcending, or
settling-down, process and a specific proce-
dure for using it mentally without effort again
to facilitate transcending” (Alexander,
Langer, Newman, Chandler, & Davies, 1989,
p. 953). The TM group was given instruction
in how to perform the technique; then “they
met with their instructors half an hour each
week to verify that they were meditating cor-
rectly and regularly. They were to practice
their program 20 minutes twice daily (morn-
ing and afternoon) sitting comfortably in their
own room with eyes closed and using a
timepiece to ensure correct length of practice”
(Alexander et al., 1989, p. 953).

Suppose that the TM group performed
significantly better than other groups on a
mental health measure.11

a. Could the researcher conclude that it
was the transcendental meditation that
caused the effect?

b. What besides the specific aspects of TM
could cause the difference between the
two groups?

c. What control groups would you add?
d. Suppose you added these control groups

and then got a significant F for the
treatment variable? What could you
conclude? Why?

3. Assume you want to test the effectiveness of
a new kind of therapy. This therapy
involves screaming and hugging people in
group sessions followed by individual
meetings with a therapist. What control
group(s) would you use? Why?

4. Assume a researcher is looking at the rela-
tionship between caffeine consumption and
sense of humor.
a. How many levels of caffeine should the

researcher use? Why?
b. What levels would you choose? Why?
c. If a graph of the data suggests a curvi-

linear relationship, can the researcher
assume that the functional relationship
between the independent and dependent
variables is curvilinear? Why or why
not?

d. Suppose the researcher used the follow-
ing four levels of caffeine: 0 mg, 20 mg,
25 mg, 26 mg. Can the researcher easily
do a trend analysis? Why or why not?

e. Suppose the researcher ranked partici-
pants based on their sense of humor.
That is, the person who laughed least got
a score of 1, the person who laughed
second-least scored a 2, and so on. Can
the researcher use these data to do a
trend analysis? Why or why not?

f. If a researcher used four levels of caf-
feine, how many trends can the
researcher look for? What are the treat-
ment’s degrees of freedom?

g. If the researcher used three levels of caf-
feine and 30 participants, what are the
degrees of freedom for the treatment?
What are the degrees of freedom for the
error term?

h. Suppose the F is 3.34. Referring to the
degrees of freedom you obtained in your
answer to “g” (above) and to Table 3
(Appendix F), are the results statistically
significant? Can the researcher look for
linear and quadratic trends?

11A modification of this study was actually done. The study included appropriate control
groups.
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5. A computer analysis reports that F(6, 23) ¼
2.54. The analysis is telling you that the
F ratio was 2.54, and the degrees of free-
dom for the top part of the F ratio ¼ 6
and the degrees of freedom for the bottom
part ¼ 23.
a. How many groups did the researcher use?
b. How many participants were in the

experiment?
c. Is this result statistically significant at

the .05 level? (Refer to Table 3 of
Appendix F.)

6. A friend gives you the following Fs and
significance levels. On what basis would
you want these Fs (or significance levels)
rechecked?
a. F(2, 63) ¼ .10, not significant
b. F(3, 85) ¼ –1.70, not significant
c. F(1, 120) ¼ 52.8, not significant
d. F(5, 70) ¼ 1.00, significant

7. Complete the following table.

SOURCE OF

VARIANCE

(SV)

SUM OF

SQUARES

(SS)

DEGREES OF

FREEDOM

(df)

MEAN

SQUARE

(MS) F

Treatment
(T) 3 levels
of
treatment

180 — — —

Error (E),
also
known as
within-
groups
variance

80 8 —

8. Complete the following table.

SOURCE OF

VARIANCE

(SV)

SUM OF

SQUARES

(SS)

DEGREES OF

FREEDOM

(df)

MEAN

SQUARE

(MS) F

Treatment
(T) (between
groups
variance)

50 5 — —

Error (E),
(within-
groups
variance)

100 — — —

Total — 30 —

9. A study compares the effect of having a
snack, taking a 10-minute walk, or getting
no treatment on energy levels. Sixty par-
ticipants are randomly assigned to a con-
dition and then asked to rate their energy
level on a 0 (not at all energetic) to 10
(very energetic) scale. The mean for the
“do nothing” group is 6.0, for having a
snack 7.0, and for walking 7.8. The F
ratio is 6.27.
a. Graph the means.
b. Are the results statistically significant?
c. If so, what conclusions can you draw?

Why?
d. What additional analyses would you do?

Why?
e. How would you extend this study?

WEB RESOURCES
1. Go to the Chapter 11 section of the book’s student

website and

a. Look over the concept map of the key terms.
b. Test yourself on the key terms.
c. Take the Chapter 11 Practice Quiz.
d. Download the Chapter 11 tutorial.

2. Do an analysis of variance using a statistical calcula-
tor by going to the “Statistical Calculator” link.

3. If you want to write your method section, use the
“Tips on Writing a Method Section” link.

4. If you want to write up the results of a one-factor,
between-participants experiment, click on the “Tips
for Writing Results” link.
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I’m an earth sign, she was a water sign—together we made mud.

—Woody Allen

The pure and simple truth is rarely pure and never simple.

—Oscar Wilde

CHAPTER OVERVIEW

To understand the relationship between the design we will discuss in this

chapter and the experimental designs we discussed in previous chapters,

let’s look at three ways you might partially replicate Langer, Blank, and

Chanowitz’s (1978) classic experiment. In that experiment, research assis-

tants tried to cut in front of participants who were in line to use a copier.

Participants were randomly assigned to receive one of several requests.

If you were to replicate that study as a simple experiment, participants

would be randomly assigned to one of two requests. For example, if you

chose to vary quality of excuse, half your participants might be asked, “Can

I cut in front of you?” (no excuse condition), whereas the other half might

be asked, “Can I cut in front of you because I want to make a copy?”

(nonsensical excuse condition). In the following table, we have diagrammed

the design and results of such a simple experiment.

Proportion of Participants Who Agreed to Let the Researcher Cut in Front
of Them to Use the Copier as Function of Researcher’s Excuse

TYPE OF EXCUSE

Group 1 Group 2

No excuse Senseless excuse (“I need to make copies”)

.60 .93

In Chapter 10, we showed how the simple experiment’s logic makes it

internally valid. However, we also pointed out that the simple experiment is

limited because it can study only two levels of a single independent vari-

able. For example, with a single simple experiment, you cannot compare

three different excuse conditions (e.g., no excuse, senseless excuse, and

reasonable excuse), three levels of temperature (e.g., cold, medium, hot),

or three types of music (e.g., classical, rock, and rap).

In Chapter 11, we showed how to extend the simple experiment’s logic

to experiments that study three or more levels of a single independent

variable. By randomly assigning participants to three or more levels of the
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treatment, you can look at the effects of varying three levels of excuses,

temperature, music, or any other variable. For example, by adding a level to

the excuse experiment diagrammed earlier, you can expand it into the three-

group experiment diagrammed here:

Proportion of Participants Who Agreed to Let the Researcher Cut in Front
of Them to Use the Copier as Function of Researcher’s Excuse

TYPE OF EXCUSE

Group 1 Group 2 Group 3

No excuse Senseless excuse (“I need
to make copies”)

Reasonable excuse (“because
I’m in a rush”)

.60 .93 .94

As we discussed in Chapter 11, experiments that manipulate three or more

levels of a factor can have impressive internal, external, and construct validity.

In this chapter, as in Chapter 11, we show how to extend the basic logic

of the simple experiment. However, instead of showing you how to stretch

the simple experiment by adding more levels of a factor, we show you how

to expand the simple experiment by adding more factors. For example,

rather than learning how to expand a simple experiment on excuses to

include more than two types of excuses, you will learn how to add another

factor, such as size of request, so you can study the effects of both excuses

and request size in the same experiment (see the following diagram).

Proportion of Participants Who Agreed to Let Researcher Cut in Front of Them to Use the Copier
as Function of Excuse.

TYPE OF EXCUSE

Size of Request No Excuse

Senseless Excuse

(“I need to make copies”)

Reasonable Excuse

(“because I’m in a rush”)

Small (“I have 5 pages”) .60 .93 .94

Large (“I have 20 pages”) .24 .24 .42

Note: Data are from Langer, Blank, and Chanowitz (1978).

In technical terms, youwill learn about factorial experiments: experiments

that study the effects of two or more independent variables (factors ) in a single

experiment. Specifically, youwill learn (a) why you should want to study the

effects of two independent variables in a single experiment, (b) how to design

such experiments, and (c) how to analyze the results of such experiments.
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THE 2 � 2 FACTORIAL EXPERIMENT
To understand why and how to design factorial experiments, we will focus on
the simplest factorial experiment: the 2 � 2 (“2 by 2”) between-subjects
factorial experiment. Before discussing why you would want to do a 2 � 2 fac-
torial experiment, let’s be clear about how the 2 � 2 is similar to and different
from other factorial experiments.

Although all factorial experiments must include at least two levels of two
factors, factorial experiments can differ in (a) how many levels of each factor
they have and (b) how many factors they have. To let people know how
many levels each factor has, researchers use terminology similar to what
builders use. When a builder refers to a “2 by 4,” the builder means a board
for which the first dimension (thickness) is 2 inches and the second dimension
(width) is 4 inches. Similarly, when a researcher refers to a “2 by 4,” the
researcher means that the first experimental factor has 2 levels and the second
experimental factor has 4 levels. Thus, the Langer, Blank, and Chanowitz
(1978) we described earlier was a 3 (Excuse type: no excuse, poor excuse, or
reasonable excuse) � 2 (Request size: small or large).

In a 2 � 2 factorial experiment, there are two independent variables and
both have two levels. For example, suppose we had a 2 (Excuse type: no
excuse or reasonable excuse) � 2 (Size of request: small or large) experiment.
The “�”—pronounced as “by”—indicates that the first variable is crossed
(combined) with the second factor. That is, rather than conditions consisting
of only a single manipulation (e.g., no excuse or reasonable excuse), each
condition will consist of a manipulation of the first factor (e.g., no excuse
or reasonable excuse) combined with a manipulation of the second factor
(e.g., small request or large request). Thus, in a 2 (Excuse: none, reasonable)
� 2 (Size of request: small, large) factorial, crossing 2 levels of 2 different
independent variables would result in 4 (2 � 2) different treatment condi-
tions: (1) a no excuse, small request condition; (2) a no excuse, large request
condition; (3) a reasonable excuse, small request condition; and (4) a reason-
able excuse, large request condition (see the next table).1

Size of Request No Excuse
Reasonable Excuse

(“because I’m in a rush”)

Small (“I have 5 pages”) .60 .94

Large (“I have 20 pages”) .24 .42

In the 2 � 2 between-subjects factorial experiment, each participant is
randomly assigned to experience one—and only one—of the four treatment
combinations. Thus, in the example diagrammed previously, you would have
four groups: (1) a no excuse, small request group; (2) a no excuse, large
request group; (3) a reasonable excuse, small request group; and (4) a reason-
able excuse, large request group.

1 If we had 3 levels of excuse instead of just 2, we would have a 3 � 2 design instead of a 2 � 2.
With a 3 � 2, we would have 6 (3 � 2) different conditions. If we had three, 2-level factors
(excuse type, request size, and gender of experimenter), we would have a 2 � 2 � 2 design. With
a 2 � 2 � 2 experiment, we would have 8 (2 � 2 � 2) experimental conditions.
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To better understand how a 2 � 2 between-subjects factorial experiment
works, let’s turn to an actual 2 � 2 experiment: Pronin and Wegner’s (2007)
experiment on manic thinking. In that experiment, the researchers were
interested in seeing whether getting participants’ thoughts to race would
boost participants’ moods—and whether this boost would occur even when
people were thinking negative thoughts. To manipulate what participants
thought, Pronin and Wegner had participants read aloud 60 statements that
were either uplifting or depressing. To control how fast participants were
thinking, Pronin and Wegner made participants read those statements either
very quickly or very slowly. Participants randomly assigned to the uplifting
statements groups read a neutral statement—“Today is no better or worse
than another day”—and then read statements that became increasingly posi-
tive. For example, the second statement participants in the uplifting state-
ments group read was “I do feel pretty good today, though,” whereas the
last statement they read was “Wow! I feel great!” Participants randomly
assigned to the depressing statements read the same neutral statement as the
uplifting statements group (“Today is no better or worse than any other
day”) but then read statements that became increasingly negative. For exam-
ple, the second statement they read was “However, I feel a little low today,”
whereas the last statement they read was “I want to go to sleep and never
wake up.”

Half of the participants in the uplifting statements condition were
randomly assigned to read the statements quickly (about twice as fast as stu-
dents would normally read those statements) whereas the other half were to
read the statements slowly (about half as fast as students would normally
read those statements). Similarly, half the participants in the depressing state-
ments condition were randomly assigned to read the statements quickly,
whereas the other half were randomly assigned to read the statements slowly.
Both fast and slow condition participants read statements aloud from a
PowerPoint1 presentation: The only difference was that the PowerPoint1

presentation went nearly four times as fast in the fast condition as in the
slow condition. After the participants read the statements, they filled out sev-
eral scales, one of which was a mood scale. Thus, if you were to repeat the
Pronin and Wegner (2007) 2 (Statement type: negative or positive) � 2 (State-
ment speed: slow or fast), you would randomly assign participants so that
one-fourth of your participants were in each of the four conditions dia-
grammed in the following table:

GROUP 1 GROUP 2

Negative statements Negative statements

Slow presentation Fast presentation

GROUP 3 GROUP 4

Positive statements Positive statements

Slow presentation Fast presentation
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Each Column and Each Row of the 2 � 2 Factorial Is Like
a Simple Experiment
You could view each row of the 2 � 2 factorial as a simple experiment. With
that perspective, you would see the 2 � 2 factorial experiment as two simple
experiments, both of which looked at whether participants are in better
moods when statements are presented quickly than when statements are pre-
sented slowly. That is, as you can see from the following table, both experi-
ments compare slow presentation to fast presentation.

SIMPLE EXPERIMENT 1 GROUP 1 GROUP 2

(Effect of slow vs. fast
presentation for negative
statements)

Negative statements
Slow presentation

Negative statements
Fast presentation

SIMPLE EXPERIMENT 2 GROUP 3 GROUP 4

(Effect of slow vs. fast
presentation for positive
statements)

POSITIVE STATEMENTS

Slow presentation
POSITIVE STATEMENTS

Fast presentation

You could also view each column of the 2 � 2 factorial as a simple
experiment. With that perspective, you would see the 2 � 2 factorial experi-
ment as two different simple experiments, both of which looked at whether
participants are in a better mood after reading positive statements than after
reading negative statements (see the following table).

SIMPLE EXPERIMENT 3
(EFFECT OF STATEMENT TYPE

[NEGATIVE VS. POSITIVE] IN

THE SLOW CONDITIONS)

SIMPLE EXPERIMENT 4
(EFFECT OF STATEMENT TYPE

[NEGATIVE VS. POSITIVE] IN

THE FAST CONDITIONS)

GROUP 1 GROUP 2

Negative statements
Slow presentation

Negative statements
Fast presentation

GROUP 3 GROUP 4

Positive statements
Slow presentation

Positive statements
Fast presentation
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If you looked at both the rows and the columns, you would see that the
factorial experiment contains four simple experiments (see the following
table).

COLUMN CONTAINING

SIMPLE EXPERIMENT 3
COLUMN CONTAINING

SIMPLE EXPERIMENT 4

(Effect of negative vs.
positive statements in
slow presentation conditions)

(Effect of negative vs. positive
statements in fast presentation
conditions)

ROW CONTAINING SIMPLE

EXPERIMENT 1 GROUP 1 GROUP 2

(Effect of slow vs. fast
presentation for negative
statement participants)

Negative statements
Slow presentation

Negative statements
Fast presentation

ROW CONTAINING SIMPLE

EXPERIMENT 2 GROUP 3 GROUP 4

(Effect of slow vs. fast
presentation for positive
statement participants)

Positive statements
Slow presentation

Positive statements
Fast presentation

How One Experiment Can Do More Than Two
To illustrate how similar each row of a 2 � 2 is to a simple experiment, suppose
you had done a simple experiment involving only the two groups listed in the
first row of the 2 � 2 (the negative statements/slow presentation group vs.
the negative statements/fast presentation group). In that case, you would see the
effect of, as the authors put it, “thinking slowly” vs. “thinking fast,” for partici-
pants who read only negative statements. In the same way, if you did the 2 � 2
experiment diagrammed above and compared only the two groups in the first
row of the 2 � 2 (the negative statements/slow presentation group vs. the nega-
tive statements/fast presentation group), you would get the simple main effect of
presentation speed for participants who read only negative statements.

The 2 � 2 Yields Four Simple Main Effects
Because the 2 � 2 contains four simple experiments, if we used certain statis-
tical techniques, we could use the 2 � 2 to find four simple main effects:

1. the simple main effect for speed in the negative statements conditions (by
looking at the first row and comparing the slow presentation, negative
statements group with the fast presentation, negative statements group)

2. the simple main effect for speed in the positive statements conditions (by
looking at the second row and comparing the slow presentation, positive
statements group with the fast presentation, positive statements group)

3. the simple main effect for negative vs. positive statements in the slow
presentation conditions (by looking at the first column and comparing
the negative statements, slow presentation group with the positive state-
ments, slow presentation group)
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4. the simple main effect for negative vs. positive statements in the fast pre-
sentation conditions (by looking at the second column and comparing the
negative statements, fast presentation group with the positive statements,
fast presentation group)

The simplest way to estimate these simple main effects is to subtract the
relevant group means from each other. To illustrate, suppose the cell means
for our four groups were as follows:

GROUP 1 GROUP 2

Negative statements
Slow presentation

Negative statements
Fast presentation

4 6

GROUP 3 GROUP 4

Positive statements
Slow presentation

Positive statements
Fast presentation

12 14

With these means, we could estimate four simple main effects: two speed
(slow vs. fast) simple main effects (by looking at the two rows) and two state-
ment type (positive vs. negative) simple main effects (by looking at two col-
umns). Let’s first look for the two speed simple main effects by comparing
the groups that differ in terms of speed but are the same in terms of whether
they read positive or negative statements:

1. The simple main effect for speed in the negative statements conditions ¼
2 (6� 4; see the first row).

2. The simple main effect for speed in the positive statements conditions ¼ 2
(14�12; see the second row).

Now, let’s look for the two statement type simple main effects by com-
paring the groups that are different in terms of statement type but are the
same in terms of speed:
3. The simple main effect for statement type (positive vs. negative) in the

slow statements conditions ¼ 8 (12� 4); see the first column).
4. The simple main effect for statement type in the fast statements conditions

¼ 8 (14�6; see the second column).
The following table displays the group means and estimates of our four

simple main effects.

SLOW SPEED FAST SPEED SPEED SIMPLE MAIN EFFECTS

Negative statements 4 (Group 1) 6 (Group 2) þ2 (6� 4)

Positive statements 12 (Group 3) 14 (Group 4) þ2 (14� 12)

Statement type simple
main effects

þ8
(12� 4)

þ8
(14� 6)
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The 2 � 2 Yields Two Pairs of Simple Main Effects
We have shown you that the 2 � 2 can yield four simple main effects. How-
ever, the strength of the 2 � 2 is not that it produces four separate main
effects. Instead, its strength is that it produces two pairs of simple main
effects: (1) a pair of simple main effects relating to the first independent vari-
able (e.g., two speed simple main effects) and (2) a pair of simple main effects
relating to the second independent variable (e.g., two type of statement
[uplifting vs. depressing] simple main effects). To capitalize on the two pairs
of simple main effects that the 2 � 2 produces, researchers’ analyses focus
on two things:

1. combining (averaging) each treatment’s pair of simple main effects to
estimate each treatment’s overall, average effect

2. contrasting (subtracting) each treatment’s pair of simple main effects to
determine whether the treatment has one effect on one group of partici-
pants but a different effect on a different group of participants

Averaging a Treatment’s Simple Main Effects Lets You Estimate the
Overall Main Effect: The Average Effect of Varying a Factor
To combine a treatment’s simple main effects, you average them. The average
of a treatment’s two simple main effects allows you to estimate the treat-
ment’s overall main effect: the average effect of varying that treatment.

In the 2 (Speed of thought: slow or fast) � 2 (Type of thought: positive
or negative), the researcher would average the two speed simple main effects
to get an estimate of the overall main effect for speed. To illustrate, suppose
the simple main effect of presentation speed was þ2 in the negative state-
ments condition (the fast presentation, negative statements participants scored
2 points higher on the mood scale than the slow presentation, negative state-
ments participants). Furthermore, suppose that the simple main effect of pre-
sentation speed was þ4 in the positive statement conditions (the fast
presentation, positive statements participants scored 4 points higher on the
mood scale than the slow presentation, positive statements participants). In
that case, the estimate for the overall main effect of presentation speed
would be 3 (because the average of 2 and 4 is 3).

Similarly, to estimate the overall main effect for (negative vs. positive)
statement type, the researcher would average the two statement type simple
main effects. If the overall statement type effect was statistically significant, it
would mean that, on the average, participants who read negative statements
were in a different mood than the participants who read positive statements.

One reason researchers emphasize overall main effects is convenience. It
is easier to talk about one overall main effect than about two simple main
effects.

However, a more important reason for averaging the two simple main
effects into an overall main effect is that it allows us to make more general
statements about that variable’s effects. Consider the advantage of averaging
the two simple speed main effects. Because we combined two simple main
effects, we are not confined to saying that speeding up thoughts improves
mood if you are already thinking positive thoughts. Instead, we can say that,
on the average, across conditions that varied from participants thinking
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negative thoughts to participants thinking positive thoughts, participants who
thought faster were in better moods.

Subtracting a Treatment’s Simple Main Effects Lets You Estimate
the Interaction
But what if the simple main effect for speed of thought is different in the neg-
ative thought condition than in the positive thought condition? Then:

a. You should not make a general statement about the effects of thought
speed without mentioning that the effect of speeding up thought changes
depending on whether the person is thinking negative thoughts or posi-
tive thoughts.

b. You should be happy that you can compare thought speed’s simple main
effects with each other because that comparison lets you know that the
effect of speeding up thought depends on whether the person is thinking
negative thoughts or positive thoughts.

By comparing the two simple main effects of speed (the speed simple
main effect for the negative statements condition and the speed simple main
effect for the positive statements condition), you would be able to tell whether
the effect of speeding up thoughts depended on whether participants are
thinking positive or negative thoughts. If, for example, you found that that
speeding up thoughts had a negative effect in the negative statements condi-
tion, but had a positive effect in the positive statements condition, you could
say that the effect of speeding up thoughts depends on the type of statements
participants read.

If the simple main effects of speed differ depending on the type of state-
ment (positive or negative), there is an interaction between speed and statement
type (see Table 12.1). If, on the other hand, speed’s simple main effects do not
differ from each other (speed has the same effect in the negative statements
condition as it has in the positive statements condition), you do not have an
interaction. If you do not have an interaction, the effect of combining those
variables is what you would expect from adding up their individual effects.

Why You Want to Look for Interactions: The Importance
of Moderating Variables
Interactions are important and common (see Table 12.2). Treatments will
tend to have one effect on one group but another effect on another group.
For example, eating grapefruit is good for most people, but not for people
who are taking certain kinds of medications. For those people, eating grape-
fruit may kill them. For them, the positive main effect for eating grapefruit is
unimportant relative to the dangerous grapefruit � drug interaction.2

Interactions do not have to be dangerous. The only requirement for an
interaction is that the effect of combining treatments is different from the
sum of their individual effects. For example, there is an interesting interaction
involving caffeine and nicotine, both of which are stimulants. Consuming caf-
feine increases physiological arousal—unless people have nicotine in their

2A popular and effective allergy medicine was taken off the market because of this deadly
interaction.
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system. For people who have a lot of nicotine in their system, caffeine actu-
ally reduces physiological arousal: The person who has smoked several cigar-
ettes can wind down by drinking a caffeinated cola.3

Interactions do not have to involve reversing the treatment’s original
effect. To have an interaction, all that is required is that the effect of combin-
ing the treatments has an effect that is different from the sum of their individ-
ual effects. Thus, if two drugs each have a mild positive effect but taking both
drugs together has an enormously positive effect, you have an interaction.
Likewise, if one drug has a mild positive effect and another drug has no mea-
surable effect, but taking both drugs together has an enormous effect, you
have an interaction.

If neither drug has a measurable effect by itself but taking both drugs
together has a strong effect, you have an interaction. If either drug by itself
has a moderate positive effect but taking both drugs together still has no
more than a moderate positive effect, you have an interaction. If either drug
by itself has a moderate positive effect, but taking both drugs together has
no effect, you have an interaction. In short, whether the relationship between

TABLE 12.1
Simple Main Effects, Overall Main Effects, and Interactions
SIMPLE MAIN EFFECTS

Definition The effects of one independent variable at a specific level of a second indepen-
dent variable. The simple main effect could have been obtained merely by doing
a simple experiment.

How to Estimate Compare the mean for one group with the mean for a second group (for
instance, comparing the average for the slow thoughts, negative thoughts group
to the average for the fast thoughts, negative thoughts group).

Question Addressed What is the effect of the thought speed in the negative statements condition?

OVERALL MAIN EFFECT

Definition The average effect of a treatment.

How to Estimate Average a treatment’s simple main effects. If the average of the two simple main
effects is significantly different from zero, there is an overall main effect.

Question Addressed What is the average effect of speeding up thoughts in this study?

INTERACTION

Definition The effect of a treatment is different, depending on the level of a second inde-
pendent variable. That is, the effect of a variable is uneven across conditions.

How to Estimate Look at the differences between a treatment’s simple main effects. If the treat-
ment’s simple main effects are the same, there is no interaction. If, however, the
treatment’s two simple main effects differ significantly, there is an interaction.

Question Addressed Does speeding up thoughts have a different effect on those who read negative
statements than it has on those who read positive statements?

3We are indebted to an anonymous reviewer for this example.
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TABLE 12.2
Ways of Thinking About Interactions

VIEWPOINT HOW VIEWPOINT RELATES TO INTERACTIONS

Chemical Reactions Lighting a match, in itself, is not dangerous. Having gasoline around is
not, in itself, dangerous. However, the combination of lighting a match
in the presence of gasoline is explosive. Because the explosive effects of
combining gas and lighting a match are different from simply adding
their separate, individual effects, gasoline and matches interact.

Personal Relationships John likes most people.
Mary is liked by most people.
But John dislikes Mary.
Based only on their individual tendencies, we would expect John to like
Mary. Apparently, however, like gasoline and matches, the combination
of their personalities produces a negative outcome.

Sports A team is not the sum of its parts. The addition of a player may do more
for the team than the player’s abilities would suggest—or the addition
may help the team much less than would be expected because the addi-
tion upsets team “chemistry.” In other words, the player’s skills and
personality may interact with those of the other players on the team.
Knowing the interaction between the team and the player—how the two
will mesh together—may be almost as important as knowing the
player’s abilities.
Good pitchers get batters out.
Poor hitters are easier to get out than good hitters are.
However, sometimes a poor hitter may have a good pitcher’s “number”
because the pitcher’s strengths match the hitter’s strengths. Similarly,
some “poor” pitchers are very effective against some of the league’s best
batters. Managers who can take advantage of these interactions can win
more games than would be expected by knowing only the talents of the
individual team members.

Prescription Drugs Drug A may be a good, useful drug.
Drug B may also be a good, useful drug.
However, taking Drug A and B together may result in harm or death.
Increasingly, doctors and pharmacists have to be aware of not only the
effects of drugs in isolation but also of their combined effects. Ignorance
of these interactions can result in deaths and in malpractice suits.

Making General
Statements

Interactions indicate that you cannot talk about the effects of one vari-
able without mentioning that the effect of that variable depends on a
second variable.
Therefore, if you have an interaction, when discussing a factor’s effect,
you need to say “but,” “except when,” “depending on,” “only under
certain conditions.” Indeed, you will often see results sections say that
the main effect was “qualified by a _____ interaction” or “the effect of
the _____ variable was different depending on the level of (the other)
variable.”

Visually If you graph an interaction, the lines will not be parallel. That is, the
lines either already cross or if they were extended, they would eventually
cross.

(continued)
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ments could be characterized as “better apart” (two is less than one), “it
takes two” (alone they are nothing), “better together” (two is more than one
plus one), or “one is enough” (one plus one only equals one), as long as the
effect of combining treatments is different from the sum of their individual
effects, you have an interaction.

In addition to knowing about drug interactions, most people suspect that
the effect of an action depends on (interacts with) other factors. For example:

● Most people know that telling someone “congratulations” will have a
good effect if she has just been promoted but a bad effect if she has just
been fired.

● Most people suspect that, under some conditions, it pays to accuse others
of something, but under some conditions, accusing others may backfire.

Research supports the popular notion that some treatments will have one
effect on one group of participants, but a different effect on another group.
For example, Rucker and Petty (2003) found that, of the two groups of parti-
cipants who read about an employee who had a bad work ethic, the group
that learned that the employee had accused his coworkers of having a bad
work ethic liked the employee more than did the group that did not learn of
the employee making such accusations. On the other hand, of the two groups
of participants who read about an employee who had a good work ethic, the
participants who learned that the employee had accused his coworkers of
having a bad work ethic liked the employee less than did the participants
who were not told that the employee had made any accusations. Thus, there
was an employee reputation � accusation interaction.

The previous example illustrates that interactions—the effects of a combi-
nation of treatments being different from the sum of those variables’ individ-
ual effects—may involve social variables. Note, however, that interactions can
involve any variables—even physical variables such as noise and lighting. For
instance, consider the effects of two manipulated variables: (1) noise level and
(2) perception of control. If you make a group of participants believe they

VIEWPOINT HOW VIEWPOINT RELATES TO INTERACTIONS

Mathematically If you have an interaction, the effect of combining the variables is not
the same as adding their two effects. Rather, the effect is better captured
as the result of multiplying the two effects. That is, when you add 2 to a
number, you know the number will increase by 2, regardless of what the
number is. However, when you multiply a number by 2, the effect will
depend on the other number. When doubling a number, the effect is
quite different when the number to be doubled is 4 than when it is
1,000 or than when it is –40. To take another example of the effect of
multiplication, consider the multiplicative effects of interest rates on
your financial condition. If interest rates go up, that will have a big,
positive effect on your financial situation if you have lots of money in
the bank; a small, positive effect if you have little money in the bank;
and a negative effect on your finances if you owe money to the bank
(you will have to pay more interest on your debt).

TABLE 12.2
Ways of Thinking About Interactions (Continued)
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have no control over the noise level in the room, increasing the noise level
seriously harms performance. But for participants led to believe that they can
control the noise level, increasing the noise level does not harm performance.
Thus, noise level interacts with perceived control (Glass & Singer, 1972).

Because of this interaction between noise level and perceived control, you
cannot simply say that noise hurts performance. You have to say that the effect
of noise level on performance depends on (is moderated by) perceived control. In
other words, rather than stating a simple rule about the effects of noise, you
have to state a more complex rule. This complex rule puts qualifications on the
statement that noise hurts performance. Specifically, the statement that noise
hurts performance will be qualified by some phrase such as “depending on,”
“but only if,” or “however, that holds only under certain conditions.” In short,
as Gernsbacher (2007) puts it, if the rule suggested by a main effect is like the
spelling rule “i before e,” the rule describing an interaction is more like “i before
e except after c.” Note that both in the case of spelling and real life, the rule
described by the interaction is not as simple as the main effect, but it is more
accurate. Thus, as Stanovich (2007) points out, interactions encourage us to go
beyond simplistic “either/or” thinking (e.g., is your performance due to your per-
sonality or your environment) to “and” thinking (e.g., how is your performance
affected by your personality, the environment, and the interaction between your
personality and the environment).

Because the concept of interaction is so important, let’s consider one
more example. As a general rule, we can say that getting within 12 inches
(30 cm) of another person will make that person uncomfortable. Thus, the
main effect of getting physically closer to someone is to produce a negative
mood. However, what if the person who comes that close is extremely attrac-
tive? Then, getting closer may elicit positive feelings. Because the effect of
interpersonal distance is moderated by attractiveness, we can say that there is
an interaction between distance and attractiveness.

In short, you now know two facts about interactions. First, if there is an
interaction involving your treatment, it means that the treatment has one
effect under one set of conditions but another effect under another set of con-
ditions. Second, interactions play an important role in real life because in real
life, the right answer often depends on the situation.

Interesting Questions in Modern Psychology Are Often
Questions About Interactions
As psychology has progressed, psychologists have focused increasingly more
attention on interactions. One reason psychologists focus on interactions is
that psychologists have already discovered the main effects of many variables.
We know how most individual variables act in isolation. Now, it is time to go
to the next step—addressing the question, “What is the effect of combining
these variables?” Put another way, once we learn what the general effect of a
variable is, we want to find out what specific conditions may modify (moder-
ate) this general, overall effect. Consequently, in Chapter 3, we encouraged
you to generate research ideas that involved moderating variables. In other
words, we encouraged you to do what many psychologists do—focus on
interactions rather than main effects.

Another reason psychologists focus on interactions is that interactions are
common. Consequently, psychologists now frame general problems and issues
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in terms of interactions. Rather than asking, “What is the (main) effect of
personality and what is the (main) effect of the situation?” psychologists are
now asking, “How do personality and the situation interact?” Asking this
question has led to research indicating that some people are more influenced
by situational influences than others (Snyder, 1984).

Similarly, rather than looking exclusively at the main effects of heredity
and the main effects of environment, many scientists are looking at the inter-
action between heredity and environment. In other words, rather than asking,
“What is the effect of a certain environment?” they are asking, “Are the
effects of a certain environment different for some people than for others?”

Looking for these interactions sometimes produces remarkable findings.
For example, psychologists have found that certain children may thrive in an
environment that would harm children who had inherited a different genetic
predisposition (Plomin, 1993). Eventually, such research may lead to new
ways of educating parents. For instance, rather than telling parents the one
right way to discipline children, parent education may involve teaching par-
ents to identify their child’s genetic predispositions and then alter their par-
enting strategies to fit that predisposition. In short, much of the recent
research in psychology has involved asking questions that relate to interac-
tions, such as “Under what conditions do rewards hurt motivation?”

External Validity Questions Are Questions About Interactions
We do not mean to imply that the interest in interactions is an entirely new
phenomenon. Anyone interested in external validity is interested in interac-
tions. If you are concerned that a treatment won’t work on a certain type of
person (women, minorities, retired adults), you are concerned about a treat-
ment � type of person interaction. If you are concerned that a treatment that
worked in one setting (a hospital) won’t have the same effect in a different
setting (a school), you are concerned about a treatment � setting interaction.
If you are concerned that a treatment won’t have the same effect in another
culture, you are concerned about a treatment � culture interaction. If you
are concerned that the superiority of one treatment over another will diminish
over time, you are concerned about a treatment � time interaction. In sum-
mary, determining the external validity of your findings is often a matter of
determining whether your treatment interacts with time, setting, culture, or
type of participant.

Questions in Applied Psychology Are Often Questions About Interactions
Understandably, applied psychologists have always been interested in interac-
tions. One of the founders of applied psychology, Walter Dill Scott, was fasci-
nated by the fact that some people will like an advertisement that others will
hate. Therefore, he investigated personality � type of ad interactions.

Most applied psychologists have shared Scott’s interest in determining
which treatments work on which type of people. For example, therapists
know that a therapeutic approach (behavior therapy, drug therapy) that
works well for some patients (e.g., individuals with phobias) may not work
as well for others (e.g., individuals who are depressed). In other words, good
therapists know about treatment � type of patient interactions.

In conclusion, the applied psychologist is keenly interested in interactions.
When clients pay for advice, they do not want the expert to know only about
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main effects. That is, they do not want the expert to stop at saying, “My
recommended course of action works in the average case, and so it may
work for you.” Instead, clients may quiz the expert about interactions involv-
ing the expert’s proposed treatment. For example, they may ask, “Are there
circumstances in which this treatment might make things worse—and does
my case fit those circumstances?” To answer this question—that is, to know
when a treatment will be helpful and when it will be harmful—the expert
must know about the interactions involving that treatment.

Examples of Questions You Can Answer Using
the 2 � 2 Factorial Experiment
Now that you have a general understanding of main effects and interactions,
let’s apply this knowledge to a specific experiment. If you were to replicate
Pronin and Wegner’s (2007) 2 (Statement type: positive statements vs. nega-
tive statements) � 2 (Speed: slow vs. fast) experiment we described earlier,
you would look for three different kinds of effects (see Table 12.3).

First, you could look at the main effect of statement type: statement
type’s average effect. You could estimate the overall main effect for statement
type by averaging the two statement type simple main effects. For example, if,
on the average, positive statement participants were in a better mood than
participants who read negative statements, you would have a statement type
main effect.

Second, you could look at the main effect of speed: speed’s average effect.
You could estimate the overall main effect for speed by averaging the two
speed simple main effects. For example, if, on the average, participants who
were in the fast thought groups were in a better mood than participants in
the slow thought conditions, you would have a speed main effect.

Third, you could look at the interaction between speed and statement
type: the extent to which speed’s effect differs depending on what type of
statement participants read. You could probably imagine at least four scenar-
ios that would lead to an interaction:

1. If speeding up thoughts intensifies the effect of the statements, speeding
up thoughts would, in the negative statement groups, make participants’
moods more negative but, in the positive statement groups, make partici-
pants’ moods more positive.

TABLE 12.3
Questions Addressed by a 2 × 2 Experiment

EFFECT QUESTION ADDRESSED

Overall main effect for speed “On the average, does varying speed have an effect?”

Overall main effect for statement type “On the average, does varying statement type have an effect?”

Interaction between speed and
statement type

“Does the effect of speed differ depending on what type of state-
ments (positive vs. negative) participants read?”

Put another way,

“Does the effect of statement type (positive vs. negative) differ
depending onwhether participants are in the slow vs. fast condition?”
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2. If speeding up thoughts weakens the effects of the statements (perhaps
because the participants in the fast condition don’t have time to process
the statements as much as participants in the slow condition), speeding
up thoughts would, for negative thought groups, make participants’
moods less negative but, for the positive thought groups, make partici-
pants’ moods less positive.

3. If the only way to create manic thinking is to give participants both fast
thoughts and positive thoughts, speeding up thoughts might only change
mood in the positive thoughts condition. Put another way, positive
thoughts might only improve mood in the fast condition.

4. If speeding up thoughts and thinking positive thoughts both use the same
mechanism to boost mood (e.g., both distract participants from negative
thoughts), the group getting both positive statements and fast presenta-
tion might not do better than the groups getting either positive statements
or fast presentation.

As we have discussed, if there is an interaction, the effect of combining fast
presentation with negative thoughts might be less, more, or even the reverse
of what you would expect from knowing only the individual effects of speed
and thought type. To begin to estimate the size and type of your interaction,
you can subtract the two speed simple main effects from each other to get the
difference between them.

If there is no difference between the two speed simple main effects, there
is no interaction: Speed’s simple main effects are both the same, and the effect
of speed does not depend on type of statement type. Without an interaction,
if speed boosts mood by 2 points in the positive statement conditions, it also
boosts mood by 2 points in the negative statements conditions.

To review, a significant main effect for statement type would mean that,
on the average, varying statement type had an effect on mood. A significant
main effect for speed would mean that, on the average, varying speed had an
effect on mood. Finally, a significant interaction would mean that the combi-
nation of statement type and speed produces an effect that is different (more,
less, or opposite) from what you would expect from knowing only statement
type’s and speed’s separate effects.

To illustrate that an interaction indicates that the combination of factors
has an effect that is different from the sum of the factor’s individual effects,
imagine the following situation. Suppose the average effect of positive state-
ments was to boost mood by 2 points and the average effect of fast presenta-
tion was also to boost mood by 2 points. If we asked you to guess how much
better mood the participants who had the advantages of both receiving posi-
tive statements as well as a fast presentation speed (the positive statements/
fast presentation group) were in relative to the participants who had neither
of these advantages (the negative statements/slow presentation participants),
you might, after adding up the effects of positive statements (þ2) and fast
statements (þ2), say “4.” In other words, you would guess that, in this case,
2 þ 2 ¼ 4. If there is no interaction, your guess would be right.

But if there is an interaction, your guess would be wrong: The positive
statements/fast presentation participants would not have a mood that averaged
4 points higher than the mean for the negative statement/slow presentation
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participants. If the interaction magnified the effects of the two factors, the pos-
itive statements/fast presentation participants might, on the average, score
6 points higher on the mood scale than the negative statements/slow presenta-
tion participants.

If, on the other hand, the interaction reversed the effect of the two factors,
the positive statements/fast presentation participants might, on the average,
score 2 points lower than the negative statements/slow presentation participants.
If the interaction was the result of one factor neutralizing the effect of another,
the positive statements/fast presentation participants might, on the average,
score no (0) points higher on the mood scale than the negative statements/slow
presentation participants. In short, if you had a statement type � speed interac-
tion, you couldn’t predict the mood of the positive statements/fast presentation
group merely by adding the statement type effects to the speed effects.

As you can imagine, significant interactions force scientists to answer
such questions as, “Does working in groups cause people to loaf?” by saying,
“Yes, but it depends on . . .” or “It’s a little more complicated than that.”
Psychologists do not give these kinds of responses to make the world seem
more complicated than it is.

On the contrary, psychologists would love to give simple answers. Like
all scientists, psychologists prefer parsimonious explanations (simple, elegant
explanations that involve few principles) to more complex explanations.
Therefore, psychologists would love to report main effects that are not quali-
fied by interactions. Psychologists would like to say that speeding up people’s
thoughts always increases mood. However, if interactions occur, scientists
have the obligation to report them—and in the real world, interactions
abound. Only the person who says “Give me a match; I want to see if my
gas tank is empty” is unaware of the pervasiveness of interactions. Most of
us realize that when variables combine, the effects are different from what
you would expect from knowing only their individual, independent effects.

Because we live in a world where we are exposed to more than one vari-
able at a time and because the variables we are exposed to often interact, you
may be compelled to do an experiment that captures some of this complexity.
But how would you describe the results from such a factorial experiment?

POTENTIAL RESULTS OF A 2 � 2 FACTORIAL EXPERIMENT
You would describe the results of a 2 � 2 factorial experiment in terms of
(1) whether you had a main effect for your first independent variable,
(2) whether you had a main effect for your second independent variable, and
(3) whether you had an interaction. As you can see from Table 12.4, getting a
main effect for your first independent variable does not mean that you will be
more likely to get a main effect for your second independent variable or that
you will be more likely to get an interaction. Instead, like the outcomes of
three separate coin flips, the outcomes for the three different effects are inde-
pendent. Thus, as you can see from Table 12.4 (and as is also true with three
separate coin flips), there are eight basic patterns of results you could obtain.

If you did a study, how would you know which of these patterns of results
you obtained? At some point, you would need to do a statistical analysis, such
as an analysis of variance (ANOVA). Without such a statistical analysis, the
patterns you observed in your data might be due to random error rather than
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to statistically reliable treatment effects. Either before or after doing such an
analysis, however, you would probably like to see what patterns exist in your
data. Therefore, you might calculate the mean response for each group and
then make a table of those means. In the next section, we will show you how
those tables of means can help you make sense of your results.

One Main Effect and No Interaction
Let’s start by supposing you replicate the Pronin and Wegner (2007) experi-
ment we discussed earlier. Using a 2 (positive statements vs. negative state-
ments) � 2 (slow speed vs. fast speed) factorial experiment, suppose you
found results like the ones displayed in Table 12.5. To understand your
results, you might start looking at the experiment as though it were four sep-
arate simple experiments. Thus, if you look only at the first row, it is just like
you are looking at the effects of speed in a simple experiment in which all
participants read negative statements.

As you can see from the first row of Table 12.5, the slow speed/negative
statements group was in the same mood (6) as the fast speed/negative state-
ments group. Thus, varying speed had no noticeable effect in the negative
statements condition.

To find out what happened in the positive statements groups, look at the
second row. Note that looking at the second row is just like looking at a sim-
ple experiment that varied speed (while making all the participants read posi-
tive statements). As you can see by the fact that both the slow presentation
and the fast presentation scored the same on the mood scale (8), varying
speed had no noticeable effect in the positive statement condition.

Averaging the effect of speed over both the negative statements and the
positive statements conditions, you find that speed’s average (overall) effect
was zero. Put another way, the slow speed groups’ scores, on the average,
were the same as the high speed groups’. Thus, there was no overall main
effect for the speed manipulation.

Looking at the columns tells you about the effect of varying whether
statements were negative or positive. For example, looking at the first column
is like looking at a simple experiment that varied statement type (while hav-
ing all participants read the statements slowly). As you can see, the positive

TABLE 12.4
Eight Potential Outcomes of a 2 × 2 Factorial Experiment

1. A Main Effect for Variable 1 No Main Effect for Variable 2 No Interaction

2. No Main Effect for Variable 1 A Main Effect for Variable 2 No Interaction

3. A Main Effect for Variable 1 A Main Effect for Variable 2 No Interaction

4. A Main Effect for Variable 1 A Main Effect for Variable 2 An Interaction

5. No Main Effect for Variable 1 No Main Effect for Variable 2 An Interaction

6. A Main Effect for Variable 1 No Main Effect for Variable 2 An Interaction

7. No Main Effect for Variable 1 A Main Effect for Variable 2 An Interaction

8. No Main Effect for Variable 1 No Main Effect for Variable 2 No Interaction

Note that having (or not having) a main effect has no effect on whether you will have an interaction.
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statements group scores an average of 2 points higher (8�6 ¼ 2) than the
negative statements group. Thus, there may be a simple main effect for state-
ment type in the slow speed condition.

Looking at the second column shows you the effect of statement type for
the fast-speed participants. In a way, looking at the second column is like
looking at a simple experiment that manipulated statement type (while having
all participants read the statements quickly). As you can see, the positive
statement group scores an average of 2 points higher on the mood scale than
the negative statement group (8�6 ¼ 2). Thus, there may be a simple main
effect for statement type in the fast-speed condition.

Because statement type increases mood for both the slow-speed and the
fast-speed participants, there seems to be an overall main effect for statement
type. Our best estimate of this average effect of statement type is that positive
statements increase mood 2 points more than negative statements do.4

Because statement type’s effect does not differ depending on speed condition,
there is no interaction between statement type and speed. Specifically, there is
no interaction because positive statements increase mood by the same number

TABLE 12.5
Main Effect for Statement Type, No Interaction

SLOW SPEED FAST SPEED

SPEED SIMPLE

MAIN EFFECTS

Negative statements 6 6 0 (6� 6 ¼ 0)

Positive statements 8 8 0 (8� 8 ¼ 0)

Statement type simple main effects 2 (8�6 ¼ 2) 2 (8� 6 ¼ 2)

Averaging a treatment’s simple main effects gives us the treatment’s overall main effect:

Simple main effect of Statement type in the slow presentation condition 2

Simple main effect of Statement type in the fast presentation condition 2

Average effect (overall main effect) of Statement type 4/2 ¼ 2

Simple main effect of SPEED in the negative statements condition 0

Simple main effect of SPEED in the positive statements condition 0

Average effect (overall main effect) of SPEED 0/2 ¼ 0

Comparing a treatment’s simple main effects tells us whether there is an interaction:

Because there are no differences between statement type’s two simple main effects (both are 2), there is no
interaction. In other words, because the effect of statement type is not affected by the speed with which the
statements are presented, there is no interaction.

4Because of random error, you don’t know what the effect actually is. Indeed, without using sta-
tistical tests, you can’t claim that you have a significant main effect or an interaction. However,
because our purpose in this section is to teach you how to interpret tables and graphs and
because the tables and graphs you will see in journal articles will almost always be accompanied
by a statistical analysis, we will pretend—in this section—that any differences between means are
statistically significant and due entirely to treatment effects.
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of points (2) in the slow statements condition as they do in the fast statements
condition.

Although making tables of means is a useful way to summarize data, per-
haps the easiest way to interpret the results of a factorial experiment is to
graph the means. To see how graphing can help you interpret your data,
graph the data in Table 12.5. Before you plot your data, start by beginning
to make a graph of a simple experiment that manipulates speed. Once you
have a vertical y-axis labeled “Mood,” and a horizontal x-axis that has labels
for both slow presentation and fast presentation, you are ready to plot your
data. Start by plotting two points representing the two means from the top
row. Next, draw a line between those points and label that line “Negative
statements.” Then, plot the bottom row’s two means. Draw a line between
those two points and label that line “Positive statements.” Your graph should
look something like Figure 12.1. If it doesn’t, please consult Box 12.1.

Figure 12.1 confirms what you saw in Table 12.5. Negative statements
decreased mood relative to positive statements, as shown by the negative
statements participants’ line being below the positive statements participants’
line. Speed did not affect mood, as shown by the fact that both lines stay per-
fectly level as they go from slow presentation (left) side to fast presentation
(right) side of the graph.

Finally, there is no interaction between speed and statement type on
mood, as shown by the fact that the lines are parallel.5 The lines are parallel
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Presentation speed

Positive statements
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Negative statements

(0)

(0)

FIGURE 12.1 Main Effect for Statement Type, No Interaction
Note: Numbers in parentheses represent the speed simple main effects. Thus, the sim-
ple main effect of speed was 0 in both the positive statements condition and the nega-
tive statements condition.

5 If you have a bar graph instead of a line graph, you can’t simply look to see if the lines are
parallel because there are no lines. Instead, the key is to see whether the relationship between the
dark bar and the light bar on the left side of the graph is the same as the relationship between
the dark bar and the light bar on the right side of the graph. For example, if, on the left side of
the graph, the dark bar is taller than the light bar, but on the right side of the graph, the dark
bar is shorter than the light bar, you may have an interaction. Alternatively, you may convert
the bar graph into a line graph by (a) drawing one line from the top, right corner of the first
dark bar to the top, left corner of the other dark bar, and (b) drawing a second line from the
top, right corner of the first light bar to the top, left corner of the other light bar.
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because speed is having the same effect on the positive statements group as it
is on the negative statements group. In this case, speed is having no (0) effect
on either group.

Note that if you graph your data, you need to see only whether the lines
are parallel to know whether you have an interaction. If your lines are paral-
lel, you do not have an interaction. If, on the other hand, your lines have dif-
ferent slopes, you may have an interaction.6

Instead of having no interaction and a main effect for statement type, you
could have no interaction and a main effect for speed. This pattern of results is
shown in Table 12.6. From the top row, you can see that in the negative state-
ments groups, fast presentation increased mood by 5 points (10� 5 ¼ 5).
Looking at the bottom row, you see that in the positive statements groups,
fast presentation also increased mood scores by 5 points (10�5 ¼ 5). By aver-
aging the effect of speed over both the negative statements and the positive
statements conditions, you could estimate that speed’s average effect, the over-
all main effect of speed, was 5.

Whereas looking at the rows tells you about the effects of speed, looking
at the columns tells you about the effect of statement type. Looking at the

BOX 12.1 Turning a 2 × 2 Table Into a Graph

If you have never graphed a 2 × 2 before, you may
need some help. How can you graph three variables
(the two factors and the dependent variable) on a two-
dimensional piece of paper? The short answer is that
you need to use two lines instead of one.

To see how to make such a graph, get a sheet of
notebook paper and a ruler. Starting near the left edge
of the sheet, draw a 4-inch line straight down the
page. This vertical line is called the y-axis. The y-axis
corresponds to scores on the dependent measure. In
this case, your dependent measure is mood. So, label
the y-axis “Mood.”

Now that you have a yardstick (the y-axis) for
mood, your next step is to put marks on that
yardstick. Having these marks will make it easier
for you to plot the means accurately. Start marking
the y-axis by putting a little hash mark on the very
bottom of the y-axis. Label this mark “0.” A half an
inch above this mark, put another mark. Label the
mark “5.” Keep making marks until you get to “20.”

Your next step is to draw a horizontal line that goes
from the bottom of the y-axis to the right side of the
page. (If you are using lined paper, you may be able to

trace over one of the paper’s lines.) The horizontal
line is called the x-axis. On the x-axis, you should put
one of your independent variables. It usually doesn’t
matter which independent variable you put on the
x-axis. However, some people believe you should
put the moderator variable on the x-axis. If you
don’t have a moderator variable, those same people
believe you should put the factor you consider most
important on the x-axis. For the sake of this example,
put “Presentation speed” about an inch below the
middle of the x-axis. Then, put a mark on the left-hand
side of the x-axis and label this mark “Slow.” Next,
put a mark on the right side of the x-axis and label
it “Fast.”

You are now ready to plot the means in the first
row of Table 12.5. Once you have plotted those two
means, draw a straight line between those two
means. Label that line “Negative statements.” Next,
plot the two means in the right column of Table 12.5.
Then, draw a line between those two points. Label
this second line (which should be above your first line)
“Positive statements.” Your graph should look
something like Figure 12.1.

6Remember that because of random error, we don’t know what the effect actually is. To know
whether we had an interaction, we would need to do a statistical significance test.
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first column tells you about the effect of statement type in the slow presenta-
tion conditions. In the slow presentation conditions, the negative statement
participants were in the same mood as the positive statements participants
(both averaged 5 on the mood scale). Thus, there was no simple main effect
of statement type in the slow presentation conditions.

Looking at the second column (the fast presentation column) tells you
about the effect of statement type in the fast conditions. You can see that, in
the fast presentation condition, the negative statement participants were in
the same mood as positive statements participants (both averaged 10 on the
mood scale). Thus, there was no simple main effect for statement type in the
fast presentation condition.

To determine the overall main effect of statement type, compute the aver-
age of the two statement type simple main effects. Because there was no
(zero) observed effect for varying statement type in both the slow presentation
condition (the first column) and the fast presentation condition (the second
column), there is no (zero) overall main effect for varying statement type.

To determine whether there is a statement type � speed interaction, you
could subtract the statement type simple main effects from each other
(0�0 ¼ 0). Or, you could subtract the speed simple main effects from each
other (5� 5 ¼ 0). Either way, the result is zero, suggesting that you don’t
have a speed � statement type interaction. You do not have an interaction
because the effect of speed is not affected by the statement type variable:
Increasing presentation speed increases mood by 5 points, regardless of
whether statements are positive or negative.

TABLE 12.6
Main Effect for Speed, No Interaction

SLOW SPEED FAST SPEED SPEED SIMPLE MAIN EFFECTS

Negative statements 5 10 5 (10� 5 ¼ 5)

Positive statements 5 10 5 (10� 5 ¼ 5)

Statement type simple
main effects

0 (5� 5 ¼ 0) 0 (10� 10 ¼ 0)

Averaging a treatment’s simple main effects gives us the treatment’s overall main effect:

Simple main effect of Statement type in the slow presentation condition 0

Simple main effect of Statement type in the fast presentation condition 0

Average effect (overall main effect) of Statement type 0/2 ¼ 2

Simple main effect of SPEED in the negative statements condition 5

Simple main effect of SPEED in the positive statements condition 5

Average effect (overall main effect) of SPEED 10/2 ¼ 5

Comparing a treatment’s simple main effects tells us whether there is an interaction:

Because there are no differences between statement type’s two simple main effects (both are 0), there is no
interaction. In other words, because the effect of statement type is not affected by the speed with which the
statements are presented, there is no interaction.
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Two Main Effects and No Interaction
Table 12.7 reflects another pattern of effects you might obtain. From the first
row, you can see that, in the negative statements groups, fast statements
increased mood scores by 4 points (8�4). Looking at the second row, you
see that, in the positive statements groups, speed also increased mood scores
by 4 points (10�6). Averaging the effect of speed over all the statement type
conditions, you find that the average effect of speed (the overall main of
speed) was to increase mood scores by 4 points.

Looking at the columns tells you about the effect of varying statement
type. The first column tells you about what happens in the slow presentation
conditions. As you can see, in the slow presentation conditions, the partici-
pants who read positive statements averaged 2 points higher (6�4) on the
mood scale than those who read negative statements. Looking at the second
column, you see that, in the fast presentation conditions, participants who
read positive statements score, on the average, 2 (10�8) points higher on
the mood scale than participants who read negative statements. Because posi-
tive statements increase mood in both the slow presentation and the fast pre-
sentation groups, it appears that there is a statement type main effect.

Comparing the two columns tells you that there is no interaction because
the effect of statement type is unaffected by speed. As Table 12.7 demon-
strates, the effect of statement type is independent of (does not depend on)
speed. In this case, positive statements increase mood by 2 points, regardless
of whether participants are in the slow or fast thought condition.

TABLE 12.7
Main Effect for Speed and Statement Type, No Interaction

SLOW SPEED FAST SPEED SPEED SIMPLE MAIN EFFECTS

Negative statements 4 8 4 (8� 4 ¼ 4)

Positive statements 6 10 4 (10� 6 ¼ 4)

Statement type simple
main effects

2 (6� 4 ¼ 2) 2 (10�8 ¼ 2)

Averaging a treatment’s simple main effects gives us the treatment’s overall main effect:

Simple main effect of Statement type in the slow presentation condition 2

Simple main effect of Statement type in the fast presentation condition 2

Average effect (overall main effect) of Statement type 4/2 ¼ 2

Simple main effect of SPEED in the negative statements condition 4

Simple main effect of SPEED in the positive statements condition 4

Average effect (overall main effect) of SPEED 8/2 ¼ 4

Comparing a treatment’s simple main effects tells us whether there is an interaction:

Because there are no differences between statement type’s two simple main effects (both are 2), there is no
interaction. In other words, because the effect of statement type is not affected by the speed with which the
statements are presented, there is no interaction.
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To look at this lack of statement type � speed interaction from a different
perspective, look at the rows. Comparing the rows shows you that the effect of
speed is unaffected by the type (positive or negative) of statement. Specifically,
fast statements increase mood by 4 points for both the negative statement groups
and the positive statements groups.

We have shown you two ways to use a table of means (like Table 12.7) to
determine whether you have an interaction: (1) by comparing (subtracting) the
simple main effects of the two rows, and (2) by comparing (subtracting) the sim-
ple main effects of the two columns. There is a third way. If either simple main
effect for a factor is the same as that factor’s overall main effect, you do not
have an interaction. Thus, in the current example, we know there is no interac-
tion because the simple main effect of fast statements in the positive statements
conditions (4) is the same as the overall main effect of fast statements (4).

Although a table of means gives you valuable information, you may
understand your data better if you graph the means. To appreciate this
point, look at a graph of Table 12.7’s means: Figure 12.2. As you can see
from the negative statements line being below the positive statements line,
positive statements increased mood relative to negative statements. As you
can see from both lines sloping upward as they go from the slow statements
(left) side to fast statements (right) side of Figure 12.2, fast statements, rela-
tive to slow statements, increased mood. Finally, as you can see from the par-
allel lines, there is no interaction between speed and statement type. The lines
are parallel because speed affects the negative statements groups the same
(parallel) way that it affects the positive statements groups.

Two Main Effects and an Interaction
Now imagine that you got a very different set of results from your statement
type–speed study. For example, suppose you found the results in Table 12.8.

As the table shows, you have main effects for both speed and statement
type. The average effect of fast statements is to decrease mood scores by
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FIGURE 12.2 Main Effect for Statement Type and Speed, No Interaction
Note: Numbers in parentheses represent the speed simple main effects. Thus, the sim-
ple main effect of speed was þ4 in both the positive statements condition and in the
negative statements condition.
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3 points, and the average effect of positive statements is to increase mood
scores by 5.

Although, on the average, fast statements have an effect, the specific
effect of fast statements varies depending on whether participants read nega-
tive or positive statements. In the positive statements condition, fast state-
ments, relative to slow statements, increased mood by 2 points (12 vs. 10).
In the negative statements condition, on the other hand, fast statements
decreased mood by 8 points (12 vs. 20). Because the effect of speed differs
depending on statement type, there is an interaction.

To see this interaction, look at Figure 12.3a. As you can see, the lines are
not parallel because the slope of the negative statements line is different from
the slope of the positive statements line. This difference in slope indicates that
the effect of speed is different for the negative statements groups than for the
positive statements groups. In this case, the negative statements line slopes
upward (indicating that negative statements participants are in a better mood
in the fast statements condition than in the slow statements condition), whereas
the positive statements line slopes downward (indicating that positive state-
ments participants are in a worse mood in the fast condition than in the slow
condition). When the lines slope in opposite directions—indicating that the
effect a treatment has with one group of participants is opposite from that
treatment’s effect on the other group of participants—the interaction is often
called a crossover (disordinal) interaction (because the lines often cross).

Crossover interactions are also called disordinal interactions because they
can’t be merely the result of having ordinal rather than interval data. That is,

TABLE 12.8
Main Effect for Speed and Statement Type, and a (Crossover) Interaction

SLOW SPEED FAST SPEED

SPEED SIMPLE MAIN

EFFECTS

Negative statements 10 12 2 (12�10 ¼ 2)

Positive statements 20 12 –8 (12� 20 ¼ –8)

Statement type simple
main effects

10 (20� 10 ¼ 10) 0 (12� 12 ¼ 0)

Averaging a treatment’s simple main effects gives us the treatment’s overall main effect:

Simple main effect of Statement type in the slow presentation condition 10

Simple main effect of Statement type in the fast presentation condition 0

Average effect (overall main effect) of Statement type 10/2 ¼ 5

Simple main effect of SPEED in the negative statements condition 2

Simple main effect of SPEED in the positive statements condition –8

Average effect (overall main effect) of SPEED –6/2 ¼ –3

Comparing a treatment’s simple main effects tells us whether there is an interaction:

Because there are differences between statement type’s two simple main effects (one is 10, one is 0), there is
an interaction. In other words, because the effect of statement type is affected by the speed with which the
statements are presented, there is an interaction.
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even if your measure can’t tell you how much more of a quality one partici-
pant has than another, that problem with your measure won’t make it look
like the treatment is increasing the quality in one condition but decreasing it
in the other condition.

Such a measurement problem, however, could cause other types of inter-
actions. To see how, consider Figure 12.3b, in which both lines slope down-
ward but the negative statements line slopes downward more sharply than
the positive statements line. As you can see from Figure 12.3b, the lines are
not parallel—and, therefore, there is an interaction. Such an interaction
could be due to the negative statements participants being more affected by
the fast thought manipulation than the positive statements participants were.
Although such an interaction could be due to the treatment having more of
an effect in one condition than in another, such an interaction could also be
due to an ordinal measure creating the illusion that the treatment has more
of an effect in one condition than the other. For example, suppose the mood
score was based on participants selecting the adjective that best describes
them. If checking “omnipotent” is scored as “20,” checking “superior” is
scored as “18,” checking “powerful” is scored as “12,” and checking “influ-
ential” is scored as “7,” this measure may be ordinal. With such an ordinal
measure, although going from 20 to 18 is clearly less of a decrease in mea-
sured mood than going from 12 to 7, going from 20 to 18 (from omnipotent
to merely superior) may not be less of a difference in actual mood than going
from 12 to 7 (from powerful to influential). Because interactions that appear
to be due to a treatment having more of an effect in one condition than in
another could actually be an illusion caused by having ordinal data, such
interactions are called ordinal interactions.
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FIGURE 12.3a Main Effects for Statement
type and Speed, and a Crossover (Disordinal)
Interaction
Note: Numbers in parentheses represent the speed
simple main effects. Thus, the simple main effect of
speed was � 8 in the positive statements condition
but þ2 in the negative statements condition.
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FIGURE 12.3b Main Effects for Statement
type and Speed and an Ordinal Interaction
Note: Numbers in parentheses represent the speed
simple main effects. Thus, the simple main effect
of speed was only � 2 in the positive statements
condition but was � 7 in the negative statements
condition.
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An Interaction and No Main Effects
You have seen that you can have main effects with interactions, but can you
have interactions without main effects? To answer this question, consider the
data in Table 12.9 and Figure 12.4a.

From the graph (Figure 12.4a), you can see that the lines are not parallel.
Instead, the lines actually cross. In this case, the crossover interaction is due
to speed having one kind of effect (increasing mood) in the negative state-
ments condition, but having an opposite effect (decreasing mood) in the posi-
tive statements condition. (In this case, “X” marks the crossover interaction.
However, graphs of crossover interactions don’t always look like Xs. As you
can see from Figure 12.4b, a graph of a crossover interaction sometimes
looks like a sideways “V” rather than an “X.”)

Although you have an interaction between statement type and speed, you
do not have a main effect for either statement type or speed. As you can tell
by looking at Table 12.9, the slow presentation groups have the same average
mood as the fast presentation groups. Therefore, there isn’t a speed main
effect. Similarly, because the negative statements groups have the same aver-
age mood as the positive statements groups, there isn’t a statement type main
effect.

Thus, you would have to say that neither statement type nor speed has a
main effect. Yet, you would not want to say that neither statement type nor
speed has any effect. Instead, you would either say that (a) statement type
has an effect, but its effect depends on the speed at which the statements are

TABLE 12.9
No Main Effects for Speed or Statement With a (Crossover) Interaction

SLOW SPEED FAST SPEED SPEED SIMPLE MAIN EFFECTS

Negative statements 10 15 þ5 (15�10 ¼ 5)

Positive statements 15 10 �5 (10� 15 ¼ � 5)

Statement type simple
main effects

þ5 (15� 10 ¼ 5) � 5 (10� 15 ¼ � 5)

Averaging a treatment’s simple main effects gives us the treatment’s overall main effect:

Simple main effect of Statement type in the slow presentation condition þ5

Simple main effect of Statement type in the fast presentation condition �5

Average effect (overall main effect) of Statement type 0/2 ¼ 0

Simple main effect of SPEED in the negative statements condition þ5

Simple main effect of SPEED in the positive statements condition �5

Average effect (overall main effect) of SPEED 0/2 ¼ 0

Comparing a treatment’s simple main effects tells us whether there is an interaction:

Because there are differences between statement type’s two simple main effects (one is þ5, one is � 5), there
is an interaction. In other words, because the effect of statement type depends on the speed with which the
statements are presented, there is an interaction.
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presented, or (b) speed has an effect, but its effect depends on whether the
statements are positive or negative.

Regardless of whether you emphasize the effect of statement type (as in
the first statement) or the effect of speed (as in the second statement), you
cannot talk about the effect of one variable without talking about the other.
In short, if you have an interaction, the effect of one variable depends on the
other—even when you don’t have any main effects.

An Interaction and One Main Effect
You have seen that you can have no main effects and an interaction. You
have also seen that you can have two main effects and an interaction. Can
you also have one main effect and an interaction? Yes—such a pattern of
results is listed in Table 12.10 and graphed in Figure 12.5.

As Table 12.10 reveals, the average effect of varying statement type is
zero. (The –2 effect of statement type in the slow condition is cancelled out
by the þ2 effect of statement type in the fast condition.) The average effect
of varying speed, on the other hand, is to increase mood scores by 2. Note,
however, that speed’s effect is uneven. In the negative statements condition,
fast statements have no observable effect (10� 10 ¼ 0). But in the positive
statements condition, speed has an effect (12� 8 ¼ 4). Because the effect of
speed differs depending on statement type, there is a speed � statement type
interaction.

Figure 12.5 tells the same story. By looking at that figure, you realize
there may be an interaction because the lines are not parallel. They are not
parallel because the effect of speed is dramatic in the positive statements con-
ditions but undetectable in the negative statements conditions.
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FIGURE 12.4a No Main Effects and a
Crossover Interaction: The Classic
“X”-Shaped Pattern
Note: Numbers in parentheses represent the
speed simple main effects. Thus, the simple
main effect of speed was �5 in the positive
statements condition but +5 in the negative
statements condition.
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FIGURE 12.4b No Main Effects and a
Crossover Interaction: The Classic
“V”-Shaped Pattern
Note: Numbers in parentheses represent the speed
simple main effects. Thus, the simple main effect of
speed was þ5 in the positive statements condition
but � 5 in the negative statements condition.
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TABLE 12.10
Main Effect for Speed With an Interaction

SLOW SPEED FAST SPEED SPEED SIMPLE MAIN EFFECTS

Negative statements 10 10 0 (10 � 10 ¼ 0)

Positive statements 8 12 4 (12 � 8 ¼ 4)

Statement type simple
main effects

� 2 (8 � 10 ¼ � 2) þ2 (12 � 10 ¼ þ2)

Averaging a treatment’s simple main effects gives us the treatment’s overall main effect:

Simple main effect of Statement type in the slow presentation condition �2

Simple main effect of Statement type in the fast presentation condition þ2

Average effect (overall main effect) of Statement type 0/2 ¼ 0

Simple main effect of Speed in the negative statements condition 0

Simple main effect of Speed in the positive statements condition 4

Average effect (overall main effect) of Speed 4/2 ¼ 2

Comparing a treatment’s simple main effects tells us whether there is an interaction:

Because there are differences between statement type’s two simple main effects (one is � 2, the other is þ2),
there is an interaction. In other words, because the effect of statement type is affected by the speed with
which the statements are presented, there is an interaction.
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FIGURE 12.5 Main Effect for Speed With an Interaction
Note: Numbers in parentheses represent the speed simple main effects. Thus, the sim-
ple main effect of speed was 4 in the positive statements condition but 0 in the negative
statements condition. Because the simple main effect of speed differs depending on
statement type, there is an interaction.
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Whereas you can glance at Figure 12.5 and instantly see the interaction,
seeing the main effects requires more mental visualization. If there is a main effect
for statement type, one of the statement type lines should, on the average, be
higher than the other. When one line is always above the other, it is easy to tell
whether there seems to be a main effect. In this case, however, the lines cross—
making it hard to tell whether one line is, on the average, above the other. If you
get a ruler and mark the midpoint of each line, you will see that the midpoint of
both lines is at the same spot. Or, you may realize that the negative statements line
is below the positive statements line just as often and to the same extent as it is
above the positive statements line. In either case, you would conclude that there is
no main effect for statement type.

To determine whether there is a main effect for speed, you could mentally
combine the two lines. If you do that, you would “see” that this combined
line slopes upward, indicating a positive main effect for speed. (If you can’t
visualize such a line, you can create one in three steps. First, take a ruler and
put a point halfway between the left ends of the two lines [i.e., a point half-
way between the two slow statements points]. Second, put a point halfway
between the right ends of the two lines [i.e., a point halfway between the
two fast statements points]. Third, draw a line between the two points you
just drew.) Alternatively, you could reason that because the positive state-
ments line slopes upward and the negative statements line stays level, the
average of the two lines would be to slope upward.

If you prefer not to think about lines at all, convert the graph into a table
of means. To practice, take Figure 12.5 and see if you can convert it into a
table resembling Table 12.10. Once you have your table of means, you will
be able to see that the average for the fast statements groups is higher than
the average for the slow statements groups.

No Main Effects and No Interaction
The last pattern of results you could obtain is to get no statistically significant
results. That is, you could fail to find a statement type effect, fail to find a
speed effect, and fail to obtain an interaction between statement type and
speed. An example of such a dull set of findings (possibly caused by a lack
of power) is listed in Table 12.11.

ANALYZING RESULTS FROM A FACTORIAL EXPERIMENT
You can now graph and describe all the possible patterns of results from a
2 � 2 experiment. But how would you analyze your results to determine
whether a main effect or an interaction is significant?

TABLE 12.11
No Main Effects and No Interaction

SLOW SPEED FAST SPEED

Negative statements 12 12

Positive statements 12 12
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You would probably use analysis of variance (ANOVA) to analyze your
data. Using ANOVA to analyze a factorial experiment is similar to using
ANOVA to analyze data from a single factor experiment. The main difference
is that instead of testing for one main effect, you will be testing for two main
effects and an interaction. Thus, your ANOVA summary table might look
like this:

SOURCE OF VARIANCE SUM OF SQUARES (SS) df MEAN SQUARE (MS) F

Speed Main Effect (A) 900 1 900 9.00

Statement type Main Effect (B) 200 1 200 2.00

Interaction (A � B) 100 1 100 1.00

Error Term (within groups) 3600 36 100

Total 4800 39

What Degrees of Freedom Tell You
Despite the fact that this ANOVA table has two more sources of variance than
the ANOVA for the multiple-group experiment described in Chapter 11, most
of the rules that apply to the ANOVA table for that design also apply to the
table for a factorial design (see Box 12.2). In terms of degrees of freedom, you
can still use the two rules we discussed in Chapter 11:

1. The number of treatment levels is one more than the treatment’s degrees
of freedom. Because the ANOVA summary table above states that the
degrees of freedom for speed is 1, we know that the study used two levels
of speed. Likewise, because the degrees of freedom for statement type is
1, we know the study used two statement types. Thus, the ANOVA sum-
mary table tells us that the study used a 2 � 2 design.

2. The total number of participants is one more than the total degrees of
freedom. Therefore, because the ANOVA table states that the total
degrees of freedom was 39, we know that there were 40 (39 þ 1) partici-
pants in the experiment.

The only new rule is for the interaction’s degrees of freedom. To calculate
the interaction term’s degrees of freedom, multiply the degrees of freedom for
the main effects making up that interaction. For a 2 � 2 experiment, that
would be 1 (df for first main effect) � 1 (df for second main effect) ¼ 1. For
a 2 � 3 experiment, that would be 1 (the df for the first main effect would
be 1) � 2 (the df for the second main effect) ¼ 2.

What F and p Values Tell You
To determine whether an effect was significant, you look at the p value for
the effect. If the p value is less than .05, the effect is statistically significant.
If you do not have the p values, compare the F for that effect to the value
given in the F table (see Table 3 in Appendix F) under the appropriate num-
ber of degrees of freedom. If your obtained F is larger than the value in the
table, the effect is statistically significant.
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What Main Effects Tell You: On the Average, the Factor
Had an Effect
Usually, you will want to start your inspection of the ANOVA results by see-
ing whether any of your overall main effects are significant. If you have a sig-
nificant effect for a factor, the overall effect of that factor is either to increase
or to decrease scores on the dependent measure. If you have a significant
main effect, your next step would be to find out whether this main effect is
qualified by an interaction.

If the interaction was not significant, your conclusions are simple and
straightforward. Having no interactions means there are no “ifs” or “buts”
about your main effects. That is, you have not found anything that would
lead you to say that the main effect occurs only under certain conditions. For
instance, if you have a main effect for statement type and no interactions,
statement type had the same kind of effect throughout your experiment—no
matter the speed at which participants read those statements. When you
don’t have interactions, you can just talk about the overall main effects.
Thus, your Results section might resemble the following:

A 2 (Statement type: positive statements, negative statements) � 2 (Speed: slow,
fast) between-subjects ANOVA was conducted to assess the effects of statement
type and speed on mood. Contrary to our hypothesis, this analysis did not find

BOX 12.2 The Mathematics of an ANOVA Summary Table for Between-
Subjects Factorial Designs

1. Degrees of freedom (df) for a main effect equal 1
less than the number of levels of that factor. If
there are 3 levels of a factor (low, medium, high),
that factor has 2 df.

2. Degrees of freedom for an interaction equal the
product of the df of the factors making up that
effect. If you have an interaction between a factor
that has 1 df and a factor that has 2 df, that
interaction has 2 df (because 1 × 2 ¼ 2).

3. To get the total degrees of freedom, subtract 1
from the number of participants. Therefore, if you
have 60 participants, the total degrees of freedom
should be 59 (60–1).

4. To get the df for the error term, determine how
many groups you had. Then, subtract the number
of groups from the number of participants. In a
2 × 2, you have 4 (2 × 2) groups. Therefore, if you
had 60 participants, your df error is 56 (60–4). If
you had a 3 × 2, you would have 6 (3 × 2) groups.
Therefore, the df error would be 54 (60–6).
Another way to get the df error is to (a) add up

the df for all the main effects and interactions, and
then (b) subtract that sum from the total degrees
of freedom. Thus, if you had 1 df for the first main
effect, 1 df for the second main effect, 1 df for
the interaction, the sum of the df for your main
effects and interactions would be 3 (1 þ 1 þ 1).
You would then subtract that sum (3) from the df
total. Thus, if the df total was 59, your error term
would be 56 (59–3).

5. To get the mean square for any effect, get the
sum of squares for that effect, and then divide by
that effect’s df. If an effect’s sum of squares was
300, and its df was 3, its mean square would be
100 (because 300/3 ¼ 100). If the effect’s sum of
squares was 300, and its df was 1, its mean
square would be 300 (because 300/1 ¼ 300).

6. To get the F for any effect, get its mean square
and divide it by the mean square error. If an
effect’s mean square was 100, and the mean
square error was 50, the F for that effect would
be 2 (because 100/50 ¼ 2).
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that the positive statements group was in a better mood (M ¼ 11.8) than the nega-
tive statements group (M ¼ 12.2), F(1, 48) ¼ 2.14, ns. However, the analysis did
reveal the expected main effect for speed, with participants in the fast thought
groups scoring higher on mood (M ¼ 16) than participants in the slow thought
groups (M ¼ 8), F(1, 48) ¼ 4.21, p ¼ .04, reffect size ¼ .12. The speed main effect
was not qualified by a speed � statement type interaction, F(1, 48) ¼ 1.42, ns.

If, on the other hand, you had an interaction, you would replace the last
sentence with something like the following:

These findings are qualified, however, by a significant speed � statement type
interaction, F(1, 48) ¼ 4.60, p ¼ .04, �2 ¼ .08. In the positive statements condi-
tions, the participants in the slow presentation condition scored almost as high on
the mood scale (M ¼ 16.1, SD ¼ 3.33) as participants in the fast presentation
condition (M ¼ 16.3, SD ¼ 3.46). However, in the negative statements condi-
tions, participants in the slow presentation condition were in a worse mood
(M ¼ 6.11, SD ¼ 3.11) than participants in the fast presentation condition
(M ¼ 10.1, SD ¼ 3.22).

What Interactions Usually Tell You: Combining Factors Leads to
Effects That Differ From the Sum of the Individual Main Effects
As you just saw, when you have a significant interaction, describing the
results is more complicated than when you don’t have a significant interac-
tion. You can’t just talk about one variable’s effect without also stating that
the variable’s effect depends on (is moderated by, is qualified by) a second
variable.

At a more concrete level, having an interaction means that a treatment
factor has a different effect on one group of participants than on another. In
our statement type–speed example, having an interaction would mean that
the simple main effect of statement type in the slow statements condition is
different from the simple main effect of statement type in the fast statements
condition. In that case, because statement type’s simple main effects would
differ, rather than talking only about statement type’s general, average, over-
all main effect, you would talk about the specific, individual, simple main
effects that make up that overall main effect.

Before you can talk about those simple main effects, however, you must
understand them. The easiest way to understand the pattern of the simple
main effects—and thus understand the interaction—is to graph them.7 In
addition to looking at the slope of each line, examine the relationship
between your lines to see why they aren’t parallel.

If the lines are sloping in different directions, you have a disordinal inter-
action and you know that the interaction is not merely an artifact of having
ordinal data. Therefore, you know that the treatment has one effect in one
condition and a different effect in another.

If, on the other hand, both lines are sloping in the same direction but one
is steeper than the other, you have an ordinal interaction and you know that

7 Interactions suggest that, rather than looking at the overall main effects, you should look at the
individual simple main effects. One way to understand an interaction is to do statistical analyses
on the individual simple main effects. The computations for these tests are simple. However,
there are some relatively subtle issues involved in deciding which test to use.

CHAPTER 12 • Analyzing Results from a Factorial Experiment 449



your interaction may merely be an artifact of having ordinal data. Therefore,
you can’t be confident that the interaction is due to the treatment having a
stronger effect on one group than on another.

PUTTING THE 2 � 2 FACTORIAL EXPERIMENT TO WORK
You now understand the logic behind the 2 � 2 design. In the next sections,
you will see how you can use the 2 � 2 to produce research that is more
interesting, has greater construct validity, and has greater external validity
than research produced by a simple experiment.

Looking at the Combined Effects of Variables That Are Combined in
Real Life
Suppose you are aware of research showing that driving while talking on cell
phones impairs driving performance and that you are aware that driving
while drunk impairs driving performance, but you are unaware of any
research looking at the combined effects of both these factors. Then, if you
think a study examining both factors would have practical implications
(some people use cell phones while driving drunk) or theoretical implications
(to see whether inattention is the mechanism for both), you might propose a
study that looked at both factors at once (you would use a driving simulator
rather than having people actually drive). Similarly, you could look at how
driving performance was affected by the interaction of cell phone use with
any of the following variables: sleep deprivation, caffeine, number of passen-
gers in the car, or driving conditions.

Ruling out Demand Characteristics
Suppose you design a simple experiment in which half of your participants
think about their own death and the other half think about going to the den-
tist. You expect that participants made to think about death are more likely
to have happy thoughts than people made to think about going to the dentist.
A friend criticizes your proposal, suggesting that your findings would just be
the result of participants playing along with your hypothesis. To test that pos-
sibility, you could add two more groups to your study: a group that imagines
how they would feel if they were in the death-salience condition and a group
that imagines how they would feel if they were in the dental-pain condition
(you are now proposing a replication of DeWall & Baumeister, 2007). If the
pattern of results for the groups that really experienced the treatment is differ-
ent from the pattern of results for the groups that role-played receiving the
treatment, you would show that your hypothesis was not as intuitive as your
friend believed. Note that all simple experiments involve comparing two
levels of treatment (e.g., treatment 1 vs. treatment 2), and that you could con-
vert most of those experiments into 2 (treatment 1 vs. treatment 2) � 2
(imagined vs. direct experience) experiments just by adding two groups that
imagine—rather that actually—experience the treatments.

Adding a Replication Factor to Increase Generalizability
The generalizability of results from a single simple experiment can always be
questioned. Critics ask questions such as, “Would the results have been
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different if a different experimenter had performed the study?” and “Would
the results have been different if a different manipulation had been used?”
Often, the researcher’s answer to these critics is to do a systematic replication:
a study that varies from the original only in some minor aspect, such as using
different experimenters or different stimulus materials.

For example, Morris (1986) found that students learned more from a lec-
ture presented in a rock-video format than from a conventional lecture. How-
ever, Morris used only one lecture and one rock video. Obviously, we would
have more confidence in his results if he had used more than one conven-
tional lecture and one rock-video lecture.

Morris would have benefited from doing a 2 � 2 experiment. Because the
2 � 2 factorial design is like doing two simple experiments at once, Morris
could have (1) obtained his original findings and (2) replicated them with a
different set of stimulus materials. Specifically, in addition to manipulating
the factor of presentation type (conventional lecture vs. rock-video lecture),
he could also have manipulated the replication factor of stimulus sets: the
particular stimulus materials shown to one or more groups of participants.
For example, he could have done a 2 (presentation type [conventional lecture
vs. rock-video format]) � 2 (stimulus sets [material about Shakespeare vs.
material about economics]) study. Because psychologists often want to show
that the manipulation’s effect can occur with more than just one particular
stimulus set, experimenters routinely include stimulus sets as a replication fac-
tor in their experiments.8

Stimulus sets are not the only replication factor that researchers use.
Some researchers employ more than one experimenter to run the study and
then use experimenter as a factor in the design.

Some of these researchers use experimenter as a factor to show the gener-
ality of their results. Specifically, they want to show that certain experimenter
characteristics (gender, attractiveness, status) do not alter the treatment’s
effect.

Other researchers use experimenters as a factor to establish that the
experimenters are not biasing the results. For instance, Ranieri and Zeiss
(1984) were worried that experimenters might unintentionally influence par-
ticipants’ responses to their experiment’s dependent measure: a self-report
scale of mood. Therefore, they used three experimenters and randomly
assigned participants to experimenter. If different experimenters had
obtained different patterns of results, Ranieri and Zeiss would have sus-
pected that the results might be due to experimenter effects rather than to
the manipulation itself.

Thus far, we have discussed instances in which the investigator’s goal in
using the factorial design was to increase the generalizability of the experi-
mental results. Thus, in a study that uses stimulus set as a replication factor,
researchers hope that the treatment � stimulus set interaction will not be sig-
nificant. Similarly, most researchers who use experimenter as a factor hope
that there will not be a treatment � experimenter interaction.

8However, psychologists have not all agreed that the traditional, fixed-effects analysis of vari-
ance should be used to analyze such studies (see Clark, 1973; Cohen, 1976; Coleman, 1979;
Kenny & Smith, 1980; Richter & Seay, 1987; Wickens & Keppel, 1983; Wike & Church,
1976).
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Using an Interaction to Find an Exception to the Rule: Looking at a
Potential Moderating Factor
Often, however, researchers are interested in finding an interaction. For
example, you may read about a study’s results and say to yourself, “But I
bet that would not happen under _____ conditions.” In that case, you should
do a study in which you essentially repeat the original experiment except that
you add what you believe will be a moderating factor that will interact with
the treatment.

To see how a moderating factor experiment would work, let’s look at a
study by Jackson and Williams (1985). Although aware of the phenomenon
of social loafing—individuals don’t work as hard on tasks when they work
in groups as when they work alone—Jackson and Williams felt that social
loafing would not occur on extremely difficult tasks. Therefore, they did a
study, which, like most social-loafing studies, manipulated whether partici-
pants worked alone or in groups. In addition, they added what they thought
would be a moderating factor—whether the task was easy or difficult (e.g.,
whether participants completed a simple maze or a challenging maze).

As expected, and as other studies had shown, social loafing occurred.
But, social loafing occurred only when the task was easy. When the task was
difficult, the reverse of social loafing occurred: Participants worked harder in
groups than alone. This interaction between task difficulty and number of
workers confirmed Jackson and Williams’s hypothesis that task difficulty
moderated social loafing (see Figure 12.6).

To see how you could take advantage of Jackson and Williams’s research
strategy, let’s review what they did. With part of their study, they replicated
an existing finding (the social-loafing main effect). With the other part, they
tested whether another variable would moderate (interact with) the social-
loafing main effect. If you like this strategy of proposing a study that tests
both a safe prediction (e.g., a replication) and a risky prediction (e.g., an
untested interaction), consider a moderating factor study. Note that this
strategy works well if you have an idea about how to neutralize a bad effect
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FIGURE 12.6 Interaction Between Task Difficulty and Number of
Coworkers on Effort
Note: Effort was scored on a 1-to-7 scale, with higher numbers indicating more effort.

452 CHAPTER 12 • Expanding the Experiment



(e.g., a training program that would reduce frustration’s effect of increasing
aggression) or intensify a good effect (e.g., instructions that may improve the
positive effects of a placebo). For more tips on designing a moderating factor
study, see Chapter 3.

Using Interactions to Create New Rules
Although we have discussed looking for an interaction to find an exception to
an existing rule, some interactions do more than complicate existing rules.
Some interactions reveal new rules. Consider Tversky’s (1973) 2 � 2 factorial
experiment. She randomly assigned students to one of four conditions:

1. Student expected a multiple-choice test and received a multiple-choice
test.

2. Student expected a multiple-choice test and received an essay test.
3. Student expected an essay test and received a multiple-choice test.
4. Student expected an essay test and received an essay test.

She found an interaction between type of test expected and test received.
Her interaction showed that participants did better when they got the same
kind of test they expected (see Figure 12.7).

Similarly, a researcher might find an interaction between mood (happy,
sad) at the time of learning and mood (happy, sad) at the time of recall. The
interaction might reveal that recall was best when participants were in the
same mood at the time of learning as they were at the time of recall. As you
can see, the 2 � 2 experiment may be useful for you if you are interested in
assessing the effects of similarity.

Conclusions About Putting the 2 � 2 Factorial Experiment to Work
As you have seen, expanding a simple experiment into a 2 � 2 experiment
allows you to test more—and more interesting—hypotheses. You can look at
the main effect of the factor you would have studied with the simple experi-
ment, plus the main effect of an additional factor, plus the interaction
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FIGURE 12.7 The Effect of Expectations and Type of Test on
Performance
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between those two factors. In many cases, the hypothesis involving the inter-
action may be the most interesting.

HYBRID DESIGNS: FACTORIAL DESIGNS THAT ALLOW YOU
TO STUDY NONEXPERIMENTAL VARIABLES

Rather than converting a simple experiment into a 2 � 2 experiment by add-
ing a second experimental factor, you could convert a simple experiment into
a 2 � 2 hybrid design by adding a nonexperimental factor. The nonexperi-
mental factor could be any variable that you cannot randomly assign, such
as age, gender, or personality type.

Hybrid Designs’ Key Limitation: They Do Not Allow Cause–Effect
Statements Regarding the Nonexperimental Factor
In such a hybrid 2 � 2 design, you could make cause–effect statements about
the effects of the experimental factor, but you could not make any cause–
effect statements regarding the nonexperimental factor. Thus, although the
study described in Table 12.12 includes gender of participant as a variable,
the study does not allow us to say anything about the effects of a partici-
pant’s gender.

You can’t make cause–effect (causal) statements regarding the effects of
the participant’s gender because your two groups may differ not only in
terms of gender but also in hundreds of other ways. For example, they may
differ in terms of college major, age, self-esteem, religiosity, parental support,
or loneliness. Any one of the hundreds of potential differences between the
groups might be responsible for the difference in behavior between the two
groups. Therefore, you cannot legitimately say that gender differences—rather
than any of these other differences—caused your two groups to behave
differently.

To help emphasize that you can make causal statements only about those
independent variables that you randomly assign, randomly assigned variables
are often called “true” independent variables or “strong” independent vari-
ables. In contrast, predictor variables that are not randomly assigned are
called “weak” independent variables to highlight the fact that you can’t deter-
mine whether they have an effect.

Reasons to Use Hybrid Designs
If you cannot make causal statements about the nonexperimental factor, why
would you want to add a nonexperimental variable to your simple experi-
ment? The most obvious and exciting reason is that you are interested in
that nonexperimental variable.

To see how adding a nonexperimental variable (age of participant,
introvert–extrovert, etc.) can spice up a simple experiment, consider the fol-
lowing simple experiment: Participants are either angered or not angered in a
problem-solving task by a confederate who poses as another participant.
Later, participants get an opportunity to punish or reward the confederate.
Obviously, we would expect participants to punish the confederate more
when they had been angered. This simple experiment, in itself, would not be
very interesting.
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Holmes and Will (1985) added a nonexperimental factor to this study—
whether participants were Type A or Type B personalities. (People with Type
A personalities are thought to be tense, hostile, and aggressive, whereas
people with Type B personalities are thought to be more relaxed and less
aggressive.) The results of this study were intriguing: If participants had not
been angered, Type A participants were more likely to punish the confederate
than Type B participants. However, if participants had been angered, Type A
and Type B participants behaved similarly (see Figure 12.8).

Likewise, Hill (1991) could have done a relatively uninteresting simple
experiment. He could have determined whether research participants are
more likely to want to talk to a stranger if that stranger is supposed to be
“warm” than if the stranger supposedly lacks warmth. The finding that
people prefer to affiliate with nice people would not have been startling.

Fortunately, Hill conducted a more interesting study by adding another
variable: need for affiliation. He found that participants who were high in
need for affiliation were very likely to want to interact with an allegedly
warm stranger, but very unlikely to want to interact with a stranger who

TABLE 12.12
The Hybrid Design: A Cross Between an Experiment and a Nonexperiment

MEN WOMEN GENDER SIMPLE MAIN “EFFECTS”

Negative statements 10 12 2 (12 � 10 ¼ 2)

Positive statements 8 14 6 (14 � 8 ¼ 6)

Statement type simple main effects � 2 (8 � 10 ¼ � 2) þ2 (14 � 12 ¼ þ2)

Averaging a factor’s simple main effects gives us the factor’s overall main effect:

Simple main effect of Statement type for men �2

Simple main effect of Statement type for women þ2

Average effect (overall main effect) of Statement type 0/2 ¼ 0

Simple main “effect” of Gender in the positive statements condition 2

Simple main “effect” of Gender in the negative statements condition 6

Average “effect” (overall main effect) of Gender 8/2 ¼ 4

Comparing a treatment’s simple main effects tells us whether there is an interaction:

Because there are differences between statement type’s two simple main effects (i.e., � 2 is different from
þ2), there is an interaction. In other words, because the effect of statement type is different for men than for
women, there is a statement type � gender interaction

Note that the hybrid 2 � 2 design answers two questions that the simple experiment does not:

1. Do male and female participants differ on the dependent variable? (Answered by the gender main
effect.)

2. Does the effect of statement type differ depending on which group (men or women) we are examining?
(Answered by the gender � treatment interaction.)
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allegedly lacked warmth. For low need for affiliation participants, on the
other hand, the alleged warmth of the stranger made little difference.

As you have seen, adding a nonexperimental factor can make a study
more interesting. As you will see in the next sections, you can add a nonex-
perimental variable to a simple experiment for most of the same reasons you
would add an experimental variable: to increase the generalizability of the
findings, to look for a similarity effect, and to look for a moderating factor.
In addition, you may add a nonexperimental factor to increase your chances
of finding a significant effect for your experimental factor.

Increasing Generalizability
You could increase the generalizability of a simple experiment that used only
men as participants by (a) using both men and women as participants and
then (b) making gender of the participant a factor in your design. This design
would allow you to determine whether the effect held for both men and
women. For example, researchers (Crusco & Wetzel, 1984) wondered
whether restaurant servers’ “Midas touch”—touching customers results in
bigger tips—holds for both men and women customers. (It does.) Some effects
do not generalize across genders. For example, whereas men were more likely
to say “yes” to a stranger’s request to have sex than to say “yes” to a stran-
ger’s request to go on a date, women were much less likely to say “yes” to a
stranger’s request to have sex than to say “yes” to a stranger’s request to go
on a date (Clark & Hatfield, 2003).

In addition to seeing whether an effect generalizes across genders, you
could see whether an effect generalizes across age, experience, or personality.
For example, researchers have found that sleep-deprived younger drivers ben-
efit more from a short nap than older drivers (Sagaspe et al., 2007); that both
police officers and experienced judges are more likely to think that a video-
taped confession is voluntary when the camera recording the confession is
focused more on the suspect than on the detective (Lassiter, Diamond,
Schmidt, & Elek, 2007); that, on math problems, people who normally do
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FIGURE 12.8 The Effect of Being Angered on the Aggressiveness of Type
A and Type B Personality Types
Source: From Holmes, D. S., & Will, M. J. (1985). Expression of interpersonal aggression by angered and nonangered
persons with Type A and Type B behavior patterns, by D. S. Holmes and M. J. Will, 1985, Journal of Personality and
Social Psychology, 48, 723�727.
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well in math are more likely to choke under pressure than people who nor-
mally do not do so well (Beilock & Carr, 2005); and that people with what
could be described as aggressive personalities are just as affected by playing
violent video games as other people (Anderson & Dill, 2000).

Studying Effects of Similarity: The Matched Factors Design
If you were interested in similarity, you might include some participant char-
acteristic (gender, status, etc.) as a factor in your design, while manipulating
the comparable (matching) experimenter or confederate factor. For example,
if you were studying helping behavior, you could use style of dress of the par-
ticipant (well-dressed/casual) and style of dress of the confederate as factors in
your design. You might find this interaction: Well-dressed participants were
more likely to help confederates who were well-dressed, but casually dressed
participants were more likely to help confederates who were casually dressed.
This interaction would suggest that similarity of dress influences helping
behavior (see Figure 12.9).

Finding an Exception to the Rule: The Moderating Factors Design
Looking for the effects of similarity is not the only reason you would want to
examine interactions involving participant characteristics. As we mentioned
earlier, you might look at interactions involving participants to see whether a
treatment that works with one type of person is as effective with another type
of person. The treatment could be any intervention—from a therapy tech-
nique to a teaching style.

For instance, if you thought that intelligence would be a moderating vari-
able for the effectiveness of computerized instruction, you might use intelli-
gence as a factor in your design. To do this, you would first give your
participants an IQ test and then divide them into two groups (above-average
intelligence and below-average intelligence). Next, you would randomly
assign the high-intelligence group to condition so that half of them were in
computerized instruction and half were in lecture instruction. You would do
the same for the low-intelligence group.
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This hybrid study might reveal some interesting findings. Suppose you
found that computerized instruction substantially increases learning for low-
IQ children but slightly decreases learning for high-IQ children. If you had
done only a simple experiment, you might have found a significant positive
effect for the new teaching technique. On that basis, you might have made
the terrible mistake of recommending that computerized instruction be used
to teach all children.

Boosting Power: The Blocked Design
Suppose you were solely interested in seeing whether instructional technique
had an effect and you had no interest in either IQ or the interaction between
IQ and instructional technique. Even then, you might still include IQ as a fac-
tor in your experiment. Specifically, before the study begins, you might divide
your participants into two blocks (groups): the low-IQ block and the high-IQ
block. Then, you would randomly assign each member of the high-IQ group
to instruction condition, thereby ensuring that half of the high-IQ participants
are assigned to the computerized instruction condition and half are assigned
to the lecture condition. Next, you would randomly assign each member of
the low-IQ block to instruction condition.

In other words, you would do exactly the same study that we just recom-
mended you do if you were looking at IQ as a moderating factor. However,
this study would be called a blocked design: a factorial design in which, to
boost power, participants are first divided into groups (blocks) on a partici-
pant variable (e.g., low-IQ block and high-IQ block) that is highly correlated
with the dependent measure, and then participants from each block are ran-
domly assigned to experimental condition.

The difference between doing this blocked design and doing the moderat-
ing factors study we just described is not what you are doing, but why you
are doing it. If you are using a blocked design, you do not care about your
blocking variable, and you do not care about the interaction between your
blocking variable and your treatment. You are using the blocking variable
solely to boost your chances of finding a statistically significant effect for
your treatment.

To understand how the blocking variable will increase your chances of
finding the treatment’s effect, you first have to understand that just like
decreasing the amount of dust on a microscope’s lens increases your chances
of seeing differences between cells, decreasing error variance increases your
chances of seeing differences between treatment conditions. Then, you have
to understand that blocked designs reduce error variance.

To understand how blocked designs reduce error variance, realize what
error variance is—variability that is not accounted for in your study. If you
use a simple experiment, individual differences in IQ are not accounted for;
consequently, any variations in scores due to individual differences in IQ con-
tribute to error variance. If, on the other hand, you use a blocked design that
blocks on IQ, you account for some of the variance due to individual differ-
ences in IQ, thereby reducing your error variance. In a sense, you use your
blocking variable to soak up variance that would otherwise be error variance.
By shrinking the error variance, you make your treatment’s effect easier to
spot.
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CONCLUDING REMARKS
We hope that you understand how factorial designs can help you refine your
existing research ideas and generate new research ideas. We know that under-
standing factorial designs, one of the most common research methods in psy-
chology, will increase your ability to read, understand, and evaluate other
people’s research.

SUMMARY
1. Factorial experiments allow you to look at

the effects of more than one independent
variable at a time.

2. The simplest factorial experiment is the one
that looks at the effects of only two levels of
two independent variables: the 2 � 2 (“two
by two”) experiment.

3. In addition to allowing you to see the indi-
vidual effects of two factors in one experi-
ment, the 2 � 2 experiment allows you to see
whether the factors’ combined effects are
different from the sum of their individual
effects.

4. Whenever the effect of combining two inde-
pendent variables is different from the sum of
their individual effects, you have an interac-
tion. In other words, an interaction occurs
when one independent variable’s effect
depends on the level of a second (moderating)
variable. For example, the independent vari-
able may have one effect when the second
factor is absent and a different effect when the
second factor is present.

5. Interactions often indicate that a general rule
does not always apply. For instance, a treat-
ment � distraction interaction indicates that
the treatment does not have the same effect
on people who are being distracted as on
people who are not being distracted.

6. Interactions can most easily be observed by
graphing your data. If your two lines aren’t
parallel, you may have an interaction.

7. A significant interaction usually qualifies
main effects. Thus, if you find a significant
interaction, you can’t talk about your main
effects without referring to the interaction.

8. Sometimes, an interaction represents similar-
ity. For instance, in a 2 (place of learning:
basement or top floor) � 2 (place of testing:
basement or top floor) factorial experiment,
an interaction may reveal that it is best to be
tested in the same place you learned the
information.

9. The following summarizes the mathematics of
an ANOVA summary table for a factorial
design:

SOURCE OF

VARIANCE (SV)
SUM OF

SQUARES (SS)
DEGREES OF

FREEDOM (df)
MEAN

SQUARE (MS) F

A SS A Levels of A–1 SSA/df A MSA/MSE

B SS B Levels of B–1 SSB/df B MSB/MSE

A � B Interaction SS (A � B) df A � df B SS/df A � B MS (A � B)/MSE

Error SSE Participants –

Groups
SSE/df E

Total SS A þ SS B þ Participants –1

SS(AXB) þ SSE
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10. With the hybrid factorial design, you can
look at an experimental factor and a factor
that you do not manipulate (personality,
gender, age) in the same study. However,
because you did not manipulate the nonex-
perimental factor, you cannot say that you
know anything about the effects of your
nonexperimental factor.

11. Once you have an idea for a simple experi-
ment, you can easily expand that idea into an
idea for a factorial experiment. For example,
you could add a replication factor (such as
stimulus set) to try to establish the generaliz-
ability of your treatment’s effect. In that case,
you would not be expecting a significant

interaction. Alternatively, if you wanted to
show that the treatment didn’t have the same
effect under all circumstances, you could add
a potential moderating variable. In that case,
you would be expecting a significant interac-
tion between the treatment and the factor that
you believe will moderate its effect.

12. If you have a nonmanipulated factor (e.g.,
participant’s age), you can look at differences
between groups on this factor. However, even
though these differences are called main
effects of the factor, do not make the mistake
of thinking that these differences represent
effects of the factor.

KEY TERMS

factorial experiments
(p. 418)

simple main effect (p. 422)
overall main effect (p. 424)

interaction (p. 425)
crossover

(disordinal)
interaction (p. 441)

systematic replication
(p. 451)

stimulus sets (p. 451)
blocked design (p. 458)

EXERCISES
1. What is the difference between

a. a simple main effect and an overall main
effect?

b. an overall main effect and an
interaction?

2. Can you have an interaction without a main
effect?

3. Suppose an experimenter looked at the sta-
tus of speaker and rate of speech on attitude
change and summarized the experiment’s
results in the following table. Describe the
pattern of those results in terms of main
effects and interactions. Assume that all
differences are statistically significant.

STATUS OF SPEAKER

Rate of Speech Low Status High Status

Slow 10 15

Fast 20 30

Attitude Change

4. Describe the pattern of results in the fol-
lowing table in terms of main effects and
interactions. Assume that all differences are
statistically significant.

STATUS OF SPEAKER

Rate of Speech Low Status High Status

Slow 10 15

Fast 20 25

Attitude Change

5. Half the participants receive a placebo. The
other half receive a drug that blocks the
effect of endorphins (pain-relieving sub-
stances, similar to morphine, that are pro-
duced by the brain). Half the placebo group
and half the drug group get acupuncture.
Then, all participants are asked to rate the
pain of various shocks on a 1-to-10 (not at
all painful to very painful) scale. The results
are as follows: placebo, no acupuncture
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group, 7.2; placebo, acupuncture group,
3.3; drug, no acupuncture group, 7.2; drug
and acupuncture group, 3.3.
a. Graph the results.
b. Describe the results in terms of main

effects and interactions (making a table
of the data may help).

c. What conclusions would you draw?
6. The following table is an incomplete

ANOVA summary table of a study looking
at the effects of similarity and attractiveness
on liking. Complete the table. (Hint: If you
are having trouble, consult Box 12.2 or the
sample ANOVA summary table in Sum-
mary point 9.) Then, answer these three
questions.
a. How many participants were used in the

study?
b. How many levels of similarity were used?
c. How many levels of attractiveness were

used?

SV SS df MS F

Similarity (S) 10 1 — —

Attractiveness
(A)

— 2 20 —

S � A
interaction

400 — 200 —

Error 540 54 —

Total 990 59

7. A professor does a simple experiment. In
that experiment, the professor finds that
students who are given lecture notes do
better than students who are not given lec-
ture notes. Imagine that you are asked to
replicate the professor’s simple experiment
as a 2 � 2 factorial.
a. What variable would you add to change

the simple experiment into a 2 � 2?
b. Graph your predictions.
c. Describe your predictions in terms of

main effects and interactions.
8. A lab experiment on motivation yielded the

following results:

a. Make a 2 � 2 table of these data.
b. Graph these data (for help with graph-

ing, see Box 12.1).
c. Describe the results in terms of main

effects and interactions. Assume that all
differences are statistically significant.

d. Interpret the results.
9. A memory researcher looks at the effects of

processing time and rehearsal strategy on
memory.

a. Graph these data.
b. Describe the results in terms of main

effects and interactions. Assume that all
differences are statistically significant.

c. Interpret the results.
10. Suppose a researcher wanted to know

whether lecturing was more effective than
group discussion for teaching basic facts.
Therefore, the researcher did a study and
obtained the following results:

GROUP PERCENT

CORRECT

Short exposure, simple strategy 20%

Short exposure, complex strategy 15%

Long exposure, simple strategy 25%

Long exposure, complex strategy 80%

SOURCE OF

VARIANCE

SS df MS F

Teaching (T) 10 1 10 5

Introversion/
Extroversion (I)

20 1 20 10

T � I interaction 50 1 50 25

Error 100 50 2

GROUP PRODUCTIVITY

No financial bonus, no
encouragement

25%

No financial bonus,
encouragement

90%

Financial bonus, no
encouragement

90%

Financial bonus,
encouragement

90%
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a. What does the interaction seem to
indicate?

b. Even if there had been no interaction
between teaching and extroversion,
would there be any value in including the

introversion–extroversion variable?
Explain.

c. What, if anything, can you conclude
about the effects of introversion on
learning?

WEB RESOURCES
1. Go to the Chapter 12 section of the book’s student

website and

a. Look over the concept map of the key terms.
b. Test yourself on the key terms.
c. Take the Chapter 12 Practice Quiz.

2. Download the Chapter 12 tutorial to practice the
following:

a. interpreting ANOVA tables
b. interpreting graphs of results of factorial

experiments.

3. Do an ANOVA using a statistical calculator by
going to the “Statistical Calculator” link.
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The art of being wise is the art of knowing what to overlook.

—William James

CHAPTER OVERVIEW

In Chapters 10, 11, and 12, you learned that you could perform an inter-

nally valid experiment by independently and randomly assigning participants

to groups. Although you understand the logic of randomly assigning partici-

pants to groups, you may still have two basic reservations about between-

subjects designs.

First, you may believe that these designs are wasteful in terms of the

number of participants they require. For example, in the simple experiment,

each participant is either in the control group or in the experimental group.

If each participant was in both the control group and the experimental

group, one participant could do the job of two.

Second, you may be concerned that between-subject designs are not

powerful enough. You may believe that between-subject differences could

hide treatment effects that would be detected if each participant acted as

his or her own control. To illustrate, suppose you use a simple experiment

to examine the effect of a video game “The Sims” on cooperation. If the

effect of playing “The Sims” is small, then random differences between

your groups could hide this effect. For example, suppose random assign-

ment resulted in a comparison group that was naturally much more coop-

erative than the Sims group. In that case, if the Sims game slightly

increased the Sims group’s cooperation scores, the comparison group

would still score higher on cooperation than the Sims group. Even if playing

the game caused the Sims group to score slightly higher on cooperation

than the comparison group, this difference may not be recognized as a

treatment effect: In many cases, statistical tests could not rule out the

possibility that such a small difference could be due to random differences

between the two groups. If, on the other hand, you use each participant as

his or her own control, the difference that the treatment created might be

detected and found to be statistically significant.

You are rightfully concerned about the twin weaknesses of between-

subjects experiments: They require many participants and have relatively

little power to detect treatment effects. In this chapter, you will learn about

designs that address these twin weaknesses: the matched-pairs design (a

special type of between-subjects design) and two types of within-subjects
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designs (sometimes called a “repeated-measures design”): the randomized

within-subject design and the counterbalanced within-subjects design.

In the matched-pairs design, you first reduce between-subject differ-

ences by matching pairs of participants on a key characteristic (e.g., in a

study of video game’s effect on aggression, you might match participants

on their scores on an aggression test). Then, you let random assignment

and statistics take care of the effects of the remaining differences between

participants.

In the randomized within-subjects design, you avoid the problem of

between-subject differences by using participants as their own controls

(e.g., you would compare each participant’s score on the aggression mea-

sure after playing a violent video game with that same participants’ score

after playing a nonviolent videogame). Then, you let randomization take

care of the effects of the remaining uncontrolled variables. By limiting the

variables that randomization has to account for, the pure within-subjects

design often has impressive power. For all its power, however, the ran-

domized within-subjects design has some serious weaknesses. To build on

its power but avoid those weaknesses, many researchers use what they

consider a refinement of the randomized within-subjects design—the

counterbalanced within-subjects design.

After learning about the two main types of pure within-subjects

designs, you will learn about mixed designs: designs in which at least one

factor is a within-subjects factor, and at least one factor is a between-

subjects factor. In mixed designs, all participants get all levels of the within-

subjects factor(s), but different participants get different levels of the

between-subjects factor(s). For example, you might use a mixed design in

which all participants played both the violent video game and the nonvio-

lent video game, but some participants played the games in a hot room

whereas others played the game in a normal temperature room. Mixed

designs are popular because they can combine the power of a within-

subjects design with the strengths of a between-subjects design.

Finally, you will learn how to weigh the trade-offs involved in choosing

among various experimental designs. Thus, by the end of this chapter, you

will be better able to choose the best experimental design for your

research problem.
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THE MATCHED-PAIRS DESIGN
If you do not have enough participants to do a powerful simple experiment,
you might use a design, such as a matched-pairs design, that requires fewer
participants. As you will see, the matched-pairs design combines the best
aspects of matching and random assignment: It uses matching to reduce the
effects of irrelevant variables, and it uses random assignment to establish
internal validity.

Procedure
In the matched-pairs design, you first measure your participants on a variable
that correlates with the dependent measure. For example, if you were doing a
memory experiment, you might first give all your participants a memory test.
Next, you would rank their scores on this memory test from lowest to high-
est. Then, you would pair the two highest scorers, the next two highest
scorers, and so on. This would give you pairs of participants with similar
scores on the memory pretest. Finally, you would randomly assign one mem-
ber of each pair to the control group and the other member to the experimen-
tal group (e.g., you might assign random numbers to all the participants and
then put the member of the pair with the higher random number in the exper-
imental condition and the lower-scoring member in the control condition).

Considerations in Using Matched-Pairs Designs
You now have a general idea of how to conduct a matched-pairs experiment.
You also know how it compares to a simple experiment: Unlike a simple
experiment, it uses matching; like a simple experiment, it uses random assign-
ment (see Table 13.1). But should you use a matched-pairs experiment
instead of a simple experiment? When considering a matched-pairs design,
you ask four questions:

1. Can you find an effective matching variable?
2. Will matching give you more power?
3. Will matching harm external validity?
4. Will matching harm construct validity?

Finding an Effective Matching Variable
As we suggested earlier, you can make effective use of the matched-pairs
design only if you can create pairs that are very similar to each other in

TABLE 13.1
Comparing the Matched Design with the Simple Experiment

MATCHED DESIGN SIMPLE EXPERIMENT

First, match participants on key
characteristics.

No matching.

Then, randomly assign each member
of the pair to condition.

Randomly assign participants
to condition.
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terms of the dependent measure. The most direct way to get such pairs is to
start your study by giving all the participants the dependent measure as a pre-
test and then matching participants based on their pretest scores. Thus, in a
memory experiment, participants could be matched based on scores on an
earlier memory test; in a maze-running experiment, participants could be
matched based on scores on an earlier maze-running trial.

If you cannot match on pretest scores, you may have to search the research
literature (see Web Appendix B) to find a matching variable. If you are lucky,
you will find matching variables that other researchers have used. More likely,
however, you will find out what variables correlate with your dependent mea-
sure. Unfortunately, after doing your library research, you may find that
(a) there are no variables that have a strong, documented relationship with per-
formance on the dependent measure, or that (b) there are good matching vari-
ables, but for ethical or practical reasons you cannot use them.

Power
You want to find an appropriate matching variable so that your study will
have adequate power: the ability to find differences between conditions.
Indeed, the reason you may choose a matched-pairs design is to avoid the
power problems that plague researchers who use other types of between-
subject designs.

As we discussed in Chapter 10, researchers who rely exclusively on ran-
dom assignment to make groups similar lose power because individual differ-
ences between participants hide treatment effects. Specifically, because
participants differ from each other, between-subjects researchers can’t assume
that the treatment group and the no-treatment group are extremely similar
before the start of the experiment—especially if the groups are small. Conse-
quently, if the groups differ at the end of the experiment, these researchers
may not know whether this difference is due to the treatment or to the groups
being different before the experiment began. Indeed, if a simple experiment
has fewer than 30 participants, even a large difference between the treatment
and no-treatment groups could be entirely due to random error.

If matching makes your groups extremely similar to each other before the
experiment begins, then there isn’t much random error due to individual dif-
ferences to hide your treatment effects. Therefore, the same, small difference
that would not be statistically significant with a simple experiment may be
significant with a matched-pairs design.

How can a matched-pairs design give you more power than a simple
experiment? The key, as we mentioned before, is that the matched-pairs
design reduces random error, allowing the treatment effect to be seen as sta-
tistically significant. Mathematically, the matched-pairs design is more likely
to find a statistically significant treatment effect because (a) the reduced ran-
dom error results in larger t values and (b) larger t values are more likely to
be statistically significant.

Why would the t value be larger in a matched-pairs design? Recall that
the t value equals the difference between the means of the two conditions
divided by an estimate of random error (the standard error of the difference).
So, with less random error, the difference between groups is divided by less,
and so the t value becomes larger (and thus more likely to be statistically sig-
nificant). For example, if the standard error of the difference for a simple
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experiment is 6 seconds, then a difference of 6 seconds between conditions
would yield a t value of 1.0 (because 6/6 ¼ 1.0)—a t value too low to be sta-
tistically significant. However, if a matched-pairs design reduced random
error so much that the standard error of the difference was only 1.0, then
that same difference of 6 seconds would yield a t value of 6.0 (because 6/1 ¼
6.0)—a t value that would probably be statistically significant. In other
words, if matching limits the effects of individual differences, you may be
able to find relatively small treatment effects.

But what if matching fails to reduce random error? For example, suppose
a researcher matched participants on shoe size. In that case, the t value will
be roughly the same as it would have been in the simple experiment because
matching hasn’t reduced the amount of random error in the study. In that
case, the matched-pairs design would then be less powerful than the simple
experiment.

To understand why poor matching leads to a matched-pairs design that
is less powerful than a simple experiment, you need to know two facts:
(1) Matched-pairs designs have half the degrees of freedom of a same-sized
simple experiment, and (2) all other things being equal, fewer degrees of free-
dom means less power. We’ll now take a closer look at these two facts.

By using a matched-pairs design instead of a simple experiment, you lose
half your degrees of freedom because, whereas degrees of freedom for a sim-
ple experiment equals number of participants–2, the degrees of freedom for a
matched-pairs study equals number of pairs–1. Thus, if you used 20 partici-
pants in a simple experiment, you would have 18 degrees of freedom (two
fewer than the number of participants). But if you used 20 participants
(10 pairs) in a matched-pairs design, you would have only 9 degrees of free-
dom (one fewer than the number of pairs).

Critical Values of t

LEVEL OF SIGNIFICANCE FOR TWO-TAILED t TEST

df .05

1 12.706

9 2.262

18 2.101

60 2.000

120 1.980

Losing degrees of freedom can cause you to lose power. As you can see
by looking at this mini t table, the fewer degrees of freedom you have, the
larger your t value must be to reach significance. For example, with
18 degrees of freedom (what you’d have if you tested 20 participants in a
simple experiment), you would need only a t value of 2.101 for your results
to be statistically significant at the .05 level. On the other hand, with
9 degrees of freedom (what you’d have if you tested 20 participants
[10 pairs of participants] in a matched-pairs experiment), your t value
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would have to be at least 2.262 to be statistically significant at the .05 level.
That is, a difference between your treatment conditions that would have
been big enough to be statistically significant if you had used a simple
experiment might not be statistically significant with a matched-pairs design
in which you matched on a variable that did not correlate with your mea-
sure. Thus, if you obtain the same t value with the matched-pairs design as
you would have obtained with a simple experiment, the matched-pairs
design costs you power.

If your matching is any good, however, you should not get the same
t value with a matched-pairs design as with a simple experiment. Instead, you
will get a larger t value with a matched-pairs design because you have reduced
a factor that shrinks t values—random error due to differences between parti-
cipants. Usually, the increase in the size of the t value will more than compen-
sate for the degrees of freedom you will lose. Thus, as long as you can match
participants on a relevant variable, you will get more power by switching from
a simple experiment to a matched-pairs design.

External Validity
Power is not the only consideration in deciding to use a matched-pairs design.
You may use—or avoid—matching for reasons of external validity.

Matched-Pairs Designs May Have Good External Validity. A matched-pairs
design may have more external validity than an equally powerful simple
experiment. Why? Because unlike the simple experiment, the matched-pairs
design can have power without limiting who can be in the experiment.

To obtain adequate power, a researcher using a simple experiment may
have to severely restrict the kind of individual who can be in the study. That
is, to reduce the degree to which differences between participants create ran-
dom differences between treatment and no-treatment groups, the experimenter
may be forced to use participants who are all very similar. For example, to cre-
ate a simple experiment that would be as powerful as a matched-pairs design,
an experimenter might need to limit participants to male, albino rats between
180 and 185 days of age. Another researcher might attempt to reduce random
error due to individual differences by allowing only middle-class women with
IQs between 115 and 120 to be in the experiment.

With a matched-pairs design, however, you can reduce random differ-
ences between the treatment and no-treatment groups without choosing parti-
cipants who are all alike. Because you can reduce random error by matching
up the participants you do have rather than by limiting the kinds of partici-
pants you can have, the matched-pairs design may allow you to generalize
your results to a broader population.

Matched-Pairs Designs May Have Poor External Validity. Matched-pairs
designs, however, do not always have better external validity than simple
experiments. For example, if participants drop out of the study between the
time they are tested on the matching variable and the time they are to perform
the experiment, matching will reduce the generalizability of your results. For
instance, suppose you start off with 16 matched pairs, but end up with only
10 pairs. In that case, your experiment’s external validity is compromised
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because your results may not apply to individuals resembling the participants
who dropped out of your experiment.

Even if participants do not drop out, matching may still harm external
validity because your results generalize only to situations in which indivi-
duals perform the matching task before getting the treatment. To illustrate,
imagine that an experimenter uses a matched-pairs design to examine the
effect of caffeine on anxiety. In that experiment, participants take an anxiety
test, then either consume caffeine (the experimental group) or do not (the
control group), and then take the anxiety test again. Suppose that the parti-
cipants receiving caffeine become more anxious than those not receiving
caffeine.

Can the investigator generalize her results to people who have not taken
an anxiety test before consuming caffeine? No, it may be that caffeine increases
anxiety only when it is consumed after taking an anxiety test. For example,
taking the anxiety test may make participants so concerned about their level
of anxiety that they interpret any increase in arousal as an increase in anxiety.
Because of the anxiety test, the arousal produced by caffeine—which might
ordinarily be interpreted as invigorating—is interpreted as anxiety.

Construct Validity
In the caffeine study we just discussed, taking the anxiety test before and after
the treatment might make participants aware that the experimenter is looking
at the effects of a drug on anxiety. The participants’ awareness of the hypoth-
esis may harm the study’s construct validity. For example, if participants
believe that the hypothesis is that the drug will increase anxiety, they may
act more anxious to help the researcher prove the hypothesis.

However, the fact that participants guess the hypothesis does not, by
itself, ruin the experiment’s construct validity. For instance, if you used a
treatment condition and a placebo condition, it does not matter whether
participants think that taking a pill is supposed to increase anxiety. Because
both groups have the same hypothesis (“The pill I took will increase my
anxiety”), knowing the hypothesis would not cause the treatment group to
differ from the placebo group. Therefore, a significant difference between
groups would have to be due to the treatment (the drug in the treatment
group’s pill).

If, on the other hand, your independent variable manipulation has poor
construct validity, matching will make your manipulation’s weaknesses
more damaging. To see how matching can magnify a manipulation’s weak-
nesses, imagine that the caffeine study used an empty control group (noth-
ing was given to the participants who did not receive the treatment). The
experimental group participants fill out an anxiety measure, take a pill, and
then fill out another anxiety measure. The experimental group participants
might think that the pill is supposed to increase their anxiety level, thereby
causing them to be more anxious—or at least, to report being more anxious.
The control group participants, not having been given a pill, would not
expect to become more anxious. Consequently, a significant difference
between the groups might be due to the two groups acting on different
beliefs about what the researchers expected, rather than to any ingredient
in the pill.
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Analysis of Data
We have talked about how matching, by making your study powerful, can
help you obtain a significant difference. We have also warned you about
external validity and construct validity problems that should make you cau-
tious when interpreting such significant differences. But how do you know
whether you have a significant difference?

As we have already suggested, you should not use a regular, between-
subjects t test. That test compares the overall, average score of the treatment
group with the overall, average score of the no-treatment group.

With a matched-pairs design, you need a test that will allow you to com-
pare the score of one member of a matched pair directly with the score of the
other member—and to make that comparison for each of your pairs. If you
have ratio or interval scale data,1 you can make those comparisons using the
dependent groups t test.2 If you plan to do a dependent groups t test by hand,
see Appendix E. If you plan to have a computer do a dependent groups t test
for you, see Box 13.1.

BOX 13.1 Using the Computer to Conduct a Dependent Groups t Test

When looking for a computer program to do an
analysis on a matched-pairs design or on a two-
condition within-subjects design, realize that the test
you are using may go by at least five names: (a) t test
for correlated samples, (b) t test for dependent
samples, (d) t test for paired samples, (d) repeated-
measures t test, and (d) within-subjects t. Realize also
that you are not limited to using a t test. For example,
you could compute a within-subjects analysis of
variance (see Box 13.2).

If you use a t test, the computer should provide
you with at least three sets of information. First, it
should tell you the number of observations you had in
each condition. Thus, if you had four scores for
condition 1, it should tell you that “n” for condition 1
was 4. Second, it should give you the mean (M) and
the standard deviation (SD) for each condition. Third,
it should give you the t value, the degrees of freedom
(df) for the test, and the two-tailed probability (p) of
obtaining a difference that great or greater between
your two means if the null hypothesis were true. For
example, a printout might look like the following two
tables.

CONDITION 1 CONDITION 2

n 4 4

M 6.25 2.5

SD 0.95 1.29

t df two-tailed p

15 3 .0006

You might report such results as follows.a “As
predicted, significantly more words were recalled in
the treatment condition (M ¼ 6.25, SD ¼ 0.95) than in
the control condition (M ¼ 2.5, SD ¼ 1.29), t(3) ¼
15.0, p < .05.”

aM stands for mean, SD stands for standard deviation (a mea-
sure of the variability of the scores), and p stands for the prob-
ability of obtaining a difference between conditions at least that
large if the treatment had no effect. SD will usually be calculated
as part of computing t (for more about SD, see Appendix E).

1 If you have only ordinal data, you should use the sign test. If you don’t know what type of
data you have, consult Chapter 5.
2You can also analyze such data using a within-subjects ANOVA (see Box 13.2).
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BOX 13.2 Using the Computer to Conduct a Within-Subjects Analysis
of Variance

If you had conducted a matched-pairs study or a two-
condition within-subjects study, you could analyze
your data using a dependent groups t test (see
Box 13.1) or a within-subjects ANOVA. If, instead
of using the dependent groups t test as we did in
Box 13.1, we used a within-subjects ANOVA, we
would get similar results. For example, our printout
might look like the following one.

DESCRIPTIVE STATISTICS

CONDITION 1 CONDITION 2

n 4 4
M 6.25 2.5
SD 0.95 1.29

WITHIN-SUBJECTS ANOVA TABLE

SOURCE SS df MS F p

Treatment 27.68 1 27.68 225 .0006
Error 0.37 3 0.123

If you compare this ANOVA printout with the within-
subjects printout in Box 13.1, you will note three
similarities. First, the table listing the descriptive statistics
in the within-subjects ANOVA printout is identical to the
table listing the descriptive statistics in the within-
subjects t test printout. The computer reports the same
number of observations per condition, the same average
for each condition, and the same variability of scores
within each condition, regardless of whether you use a
within-subjects t test or a within-subjects ANOVA.

Second, the p value for the treatment (.0006) in
the within-subjects ANOVA table is the same as the p
in the within-subjects t test. Both tests are equally
likely to find a significant result.

Third, the df error (3) is the same as the df for the t. In
both cases, df equals number of participants minus two.

Even the differences between the printouts
reveal similarities. For example, the F value (225) is
the t value (15) squared.

Given the similarities between the two types of
analyses, you probably will not be surprised to learn that
they would be written up similarly. Thus, you might report
the above-described results as follows. “As predicted,
significantly more words were recalled in the treatment
condition (M ¼ 6.25, SD ¼ 0.95) than in the control
condition (M¼ 2.5, SD¼ 1.29), F (1,3)¼ 225.0, p< .05.”

If you had more than two levels of your independent
variable, you could not use a within-subjects t test to

analyze your data. You could, however, analyze such data
with a multiple-level within-subjects ANOVA.

If you were to analyze such data with a multiple-
level within-subjects ANOVA, your printout might
resemble the printout of a two-level within-subjects
ANOVA. Indeed, the most noticeable difference
would be that your degrees of freedom will be
different. For example, if you have 3 levels of the
treatment, your treatment df will be 2.

As we have suggested, if you switch from
looking at the printout of a two-level within-subjects
design to looking at the printout of a three-level
within-subjects design, you probably will not see a big
difference. However, if you switch from looking at the
printout from one computer program to another, you
may notice a big difference. For example, in one
program, a three-level, within-subjects ANOVA
printout might look like the following printout.

WITHIN-SUBJECTS ANOVA TABLE

SOURCE SS df MS F p

Treatment 12.133 2 6.067 26 .0001
Error 1.867 8 0.233

However, the same analysis in another program
might look like the table below—minus the footnotes.
We added the footnotes to help you decipher the table.

TESTS OF WITHIN-SUBJECTS EFFECTS

MEASURE

SOURCE

TYPE III

SUM OF

SQUARES

(SS)a df

MEAN

SQUARE
b

F
c

SIG.d

Treatment 12.133 2e 6.067 26 .000
Error
(Treatment)

1.867 8 .233

aTreat this column like the previous table’s sum of squares (SS)
column.
bMean Square is calculated by dividing the Sum of Squares
(12.133) by the df (2).
cF ¼ MS for the effect divided by MS error. The bigger F is, the
more likely the results are to be statistically significant.
dThis column represents how likely it is that one would obtain a
result this large or larger if the null hypothesis were true. Tradi-
tionally, when the value in this column is less than .05, the
results are considered “statistically significant.”
eIf there are 2 degrees of freedom (df ), then there must be
three levels of the “Treatment” variable.
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Conclusions About the Matched-Pairs Design
In summary, the matched-pairs design’s weaknesses stem from matching (see
Table 13.2). If you can’t find an effective matching variable, matching may
actually hurt power. If matching alerts participants to the purpose of your
experiment, matching may hurt your construct validity. If participants drop

In yet another program, the printout might look like
the following table—minus the footnotes. (We added
the footnotes to help you decipher the table.)

GENERAL LINEAR MODELS PROCEDURE REPEATED MEASURES ANALYSIS OF VARIANCE UNIVARIATE TESTS OF HYPOTHESES FOR

WITHIN-SUBJECTS EFFECTS SOURCE: TREATMENT

df

TYPE III SUM OF

SQUARES (SS)

MEAN

SQUARE

F

VALUE P R > F
a

GEISSER GREENHOUSE

EPSILON PROB LEVEL
b

(G–T)

HUYNH FELDT EPSILON

PROB LEVEL (H–F)

2 12.33 6.067 26 0.0001 0.0001 0.0001

a The value in this column corresponds to the p value or significance level that most programs give you.
b The probability value in this column or in the next column should be used if certain assumptions of the within-subjects ANOVA
have been violated.

BOX 13.2 Continued

TABLE 13.2
Advantages and Disadvantages of Matching

ADVANTAGES DISADVANTAGES

More power because matching reduces
the effects of differences between
participants.

Matching makes more work for the
researcher.

Power is not bought at the cost of
restricting the subject population.
Thus, results may, in some cases, be gen-
eralized to a wide variety of participants.

Matching may alert participants to the
experimental hypothesis.

Results cannot be generalized to par-
ticipants who drop out after the
matching task.

The results may not apply to indivi-
duals who have not been exposed to
the matching task prior to getting the
treatment.
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out of the experiment between the time they are measured on the matching
variable and the time they are to be given the treatment, matching costs you
the ability to generalize your results to the participants who dropped out.
Finally, even if participants do not get suspicious and do not drop out,
matching still costs you time and energy.

Although matching has its costs, matching usually offers one big advantage—
power without restricting your subject population. Because the matched-pairs
design combines the power of matching with the internal validity promoting
properties of random assignment, the matched-pairs design is hard to beat when
you can study only a few participants.

WITHIN-SUBJECTS (REPEATED MEASURES) DESIGNS
One set of designs that can beat the matched-pairs design, at least in terms of
power, are the within-subjects designs (also called repeated-measures designs).
In all within-subjects designs, each participant receives all the levels or types of
the treatment that the experimenter administers, and the participant is mea-
sured after receiving each level or type of treatment. In the simplest case, each
subject would receive only two levels of treatment: no treatment and the treat-
ment. For example, a participant might complete the dependent-measure task
(e.g., take an aggression test), get a treatment (e.g., play a violent video
game), and repeat the dependent-measure task again (e.g., retake the aggres-
sion test). The experimenter would estimate the effect of the treatment by com-
paring how each participant scored when receiving the treatment (e.g., after
playing a violent video game) with how that same participant scored when
not receiving the treatment (e.g., before playing the violent video game).

Considerations in Using Within-Subjects Designs
You now have a general idea of how a within-subjects (repeated-measures)
experiment differs from a between-subjects design (for a review, see Table 13.3).

TABLE 13.3
Comparing Three Designs

BETWEEN-SUBJECTS MATCHED-PAIRS DESIGN WITHIN-SUBJECTS

Role of random
assignment

Randomly assign partici-
pants to treatment
condition.

Randomly assign members
of each pair to condition.

Randomly assign to se-
quence of treatment
conditions.

Approach to dealing
with the problem that
differences between
participants may cause
differences between the
treatment and no-
treatment conditions.

Allow random assignment
and statistics to account
for any differences be-
tween conditions that
could be due to individual
differences.

Use matching to reduce the
extent to which differences
between conditions could
be due to individual differ-
ences. Then, use random
assignment and statistics to
deal with the effects of in-
dividual differences that
were not eliminated by
matching.

Avoid the problem of
individual differences
causing differences be-
tween conditions by
comparing each partici-
pant’s performance in
one condition with his
or her performance in
the other condition(s).
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But what do you have to gain—or lose—by using a within-subjects design
instead of a between-subjects design? As you’ll soon see, by using a within-
subjects design instead of a between-subjects design, you will gain power; how-
ever, you may lose internal validity.

Increased Power
Despite potential problems with the within-subjects design’s internal validity,
the within-subjects design is extremely popular because it increases power in
two ways.

The first way is similar to how the matched-pairs design increases power—
by reducing random error. As you may recall, the matched-pairs experimenter
tries to reduce random error by reducing individual differences by comparing
similar participants with one another. Within-subjects experimenters are even
more ambitious: They want to eliminate random error due to individual differ-
ences. Therefore, they do not compare one participant with another participant;
instead, they compare each participant’s score under one condition with that
same participant’s score under another condition.

The second way the within-subjects design increases power is by increas-
ing the number of observations you get from each participant. The more
observations you have, the more random error will tend to balance out; the
more random error balances out, the more power you will have. With
between-subjects designs, the only way you can get more observations is to
get more participants because you can only get one observation per partici-
pant. But in a within-subjects experiment, you get at least two scores out of
each participant. In the simplest case, your participants serve double duty by
being in both the control and experimental conditions. In more complex
within-subjects experiments, your participants might do triple, quadruple, or
even octuple duty. For example, in a study of how men’s muscularity affected
women’s ratings of men, Frederick and Haselton (2007) had participants do
octuple duty. Specifically, to test their hypothesis that muscularity—up to a
point—would increase attractiveness ratings, Frederick and Haselton had
women rate the attractiveness of eight drawings that varied in muscularity. If
Frederick and Haselton had used a purely between-subjects design, each par-
ticipant would have made only one rating. However, because they used a
within-subjects design, each participant could rate all eight figures.

Order Effects May Harm Internal Validity
As you intuitively realize, the main advantage of within-subjects designs is
their impressive power. By comparing each participant with him or herself,
even subtle treatment effects may be statistically significant.

However, as you may also intuitively realize, the problem with compar-
ing participants with themselves is that, even without the treatment, partici-
pants may change over time. Consequently, the order (first or last) in which
an event occurs within a sequence of events can be very important. For exam-
ple, the lecture that might have been fascinating had it been the first lecture
you heard that day might be only tolerable if it is your fourth class of the
day. Because order affects responses, if a participant reacts differently to the
first treatment than to the last, we have a dilemma: Do we have a treatment
effect or an order effect?
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To get a better idea of how order (trial) effects can complicate within-
subjects experiments, let’s examine a within-subjects experiment. Imagine being
a participant in a within-subjects experiment where you take a drug (e.g.,
caffeine), play a video game, take a second drug (e.g., aspirin), and play the video
game again.

If you perform differently on the video game the second time around, can
the experimenters say that the second drug has a different effect than the first
drug? No. The experimenters can’t safely make conclusions about the differ-
ence between the two drugs because they are comparing your performance on
trial 1, when you had been exposed to only one treatment (drug 1), to your
performance on trial 2, by which time you had been exposed to three “treat-
ments”: (1) drug 1, (2) playing the game, and (3) drug 2 (see Table 13.4).

Four Sources of Order Effects
In the next few sections, you will see how being exposed to “treatments” other
than the second drug can hurt the study’s internal validity. We will start by
showing you how the variable of order (first trial vs. second trial) may affect
your performance. Specifically, we will look at four nontreatment reasons
why you may perform differently on the task after the second treatment:

1. You may do better after the second treatment because you are perform-
ing the dependent-measure task a second time. For example, the practice
you got playing the game after the first drug may help you when you
play the game again.

2. You may do worse after the second treatment because you are bored
with the dependent-measure task.

3. You may score differently because you are experiencing some delayed or
lingering effects of the first treatment.

4. You may have figured out the experimental hypothesis right after you
received the second treatment.

In summary, you need to be aware that the order in which participants
get a treatment may affect the results. Thus, Treatment A may appear to
have one kind of effect when it comes first, but may appear to have a differ-
ent kind of effect when it comes second.

TABLE 13.4
In a Within-Subjects Design, the Treatment May Not Be the Only Factor Being
Manipulated

EVENTS THAT OCCUR BEFORE BEING TESTED

Drug 1 Condition Drug 2 Condition

Between-Subjects Experiment Get Drug 1 Get Drug 2

Within-Subjects Design Get Drug 1 Get Drug 1

Play Video Game

Get Drug 2
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Practice Effects
If you perform better after the second treatment than you did after the first
treatment, your improvement may merely reflect practice effects: You may
have learned from the first trial. The first trial, in effect, trained you how to
play the video game—although that wasn’t the researcher’s plan. Not surpris-
ingly, practice effects are common: Participants often perform better as they
warm up to the experimental environment and get accustomed to the experi-
mental task. Unfortunately, rather than seeing that you improved because of
practice, the researcher may mistakenly believe that you improved due to the
treatment.

Fatigue Effects
If your performance is not enhanced by practice, it may decline due to fatigue
effects.3 You may do worse on later trials merely because you are becoming
tired or less enthusiastic as the experiment goes on. Unfortunately, a
researcher might interpret your fatigue as a treatment effect.

Treatment Carryover Effects
Practice and fatigue effects have nothing to do with any of the treatments par-
ticipants receive. Often, practice and fatigue effects are simply due to getting
more exposure to the dependent-measure task. Thus, in the video game exam-
ple, performance may improve as you learn the game or worsen as you get
bored with the game. However, exposure to the dependent measure is not
the only thing that can affect performance in later trials. The effects of a
treatment received before the first trial may affect responses in later trials.
The effects of an earlier treatment on responses in later trials are called carry-
over (treatment carryover) effects.

To imagine treatment carryover effects, suppose that on Trial 1, the
researcher gave you a tranquilizer and then measured your video game per-
formance. On Trial 2, the researcher gave you an antidepressant and mea-
sured your video game performance. On Trial 3, the researcher gave you a
placebo and measured your video game performance. If your performance
was worst in the placebo (no-drug) condition, the researcher might think
that your better performance on earlier trials was due to the drugs improving
your performance. The researcher, however, could be wrong. Your poor per-
formance in the placebo condition may be due to carryover effects from the
previous treatments: You may just be starting to feel certain effects of the
drugs that you consumed during the earlier trials. Depending on the time
between the trials, you may be feeling either “high” or hung-over.

Sensitization Effects
A fourth factor that might cause you to perform differently after the second
treatment is sensitization. Sensitization occurs when, after getting several dif-
ferent treatments and performing the dependent variable task several times,
participants realize (become sensitive to) what the independent and depen-
dent variables are, and thus, during the latter parts of the experiment, guess

3Fatigue effects could be viewed as cases in which performance is hurt by practice, whereas
practice effects could be viewed as cases in which performance is improved by practice.
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the experimental hypothesis and play along with it. For example, by the
third trial of the video game experiment, you should realize that the experi-
ment had something to do with the effects of drugs on video game
performance.

Note that sensitization has two effects. First, it threatens construct valid-
ity because participants figure out what the hypothesis is and thus may be
acting to support the hypothesis rather than reacting to the treatment. Sec-
ond, it threatens internal validity because it makes participants behave differ-
ently during the last trial (when they know the hypothesis) than they did
during the first trial (when they did not know the hypothesis).

Review of the Four Sources of Order Effects
You have seen that because of practice, fatigue, carryover, and sensitiza-
tion, the sequence in which participants receive the treatments could affect
the results. For example, suppose participants all received the treatments in
this sequence: Treatment A first, Treatment B second, and Treatment C
last. Even if none of the treatments had an effect, the effect of order (first
vs. second vs. last) might make it look like the treatments had different
effects.

If practice effects caused participants to do better on the last trial, partici-
pants would do best on the trial where they received Treatment C. Thus, even
if none of the treatments had an effect, the investigator might mistakenly
believe that Treatment C improves performance.

If, on the other hand, fatigue effects caused participants to perform the
worst on the last treatment condition, participants would do worst on the
trial where they received Treatment C. Thus, even if none of the treatments
had an effect, the investigator might mistakenly believe that Treatment C
decreases performance.

Treatment carryover effects might also affect performance on the last trial.
For example, if the effect of Treatment B is helpful but delayed, it might help
performance on the last trial. If, on the other hand, the effect of Treatment B
is harmful but delayed, it might harm performance on the last trial. Thus,
even if Treatment C has no effect, the investigator might mistakenly believe
that Treatment C is harmful (if Treatment B’s delayed effect is harmful) or
that Treatment C is helpful (if Treatment B’s delayed effect is helpful).

Sensitization might also create the illusion that Treatment C has an effect.
The participants were most naïve about the experimental hypothesis when
receiving the first treatment (Treatment A), least naïve when receiving the
last treatment (Treatment C). Thus, the ability of the participant to play
along with the hypothesis increased as the study went on. Changes in the
ability to play along with the hypothesis may create order effects that could
masquerade as treatment effects.

Dealing With Order Effects
You have seen that (a) the sources of order effects are practice, fatigue, carry-
over, and sensitization; and that (b) order effects threaten the internal validity
of a within-subjects design. How can you use this knowledge to prevent order
effects from threatening your experiment’s internal validity?
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Minimizing Each of the Individual Sources of Order Effects
Perhaps the best place to start to reduce the effect of order is to attack the four
root causes of order effects: practice, fatigue, carryover, and sensitization.

Minimizing Practice Effects. To minimize the effects of practice, you can give
participants extensive practice before the experiment begins. For example, if
you are studying maze running and you have the rats run the maze
100 times before you start administering treatments, they’ve probably learned
as much from practice as they can. Therefore, it’s unlikely that the rats will
benefit greatly from the limited practice they get during the experiment.

Minimizing Fatigue Effects. You can reduce fatigue effects by making the
experiment interesting, brief, and undemanding.

Minimizing Treatment Carryover Effects. You can reduce carryover effects by
lengthening the time between treatments to allow adequate time for the effect
of earlier treatments to wear off before the participant receives the next treat-
ment. For instance, if you were looking at the effects of drugs on how well
rats run a maze, you might reduce treatment carryover effects by spacing
your treatments a week apart (for example, antidepressant pill, wait a week,
anti-anxiety pill, wait a week, placebo).

Minimizing Sensitization Effects. You can reduce sensitization by preventing
participants from noticing that you are varying anything (Greenwald, 1976).
For example, suppose you were studying the effects of different levels of full-
spectrum light on typing performance. In that case, there would be three ways
that you could prevent sensitization.

First, you could use very similar levels of the treatment in all your condi-
tions. By using slightly different amounts of full-spectrum light, participants
may not realize that you are actually varying amount of light.

Second, you could change the level of the treatment so gradually that par-
ticipants do not notice. For example, while you gave participants a short
break in between trials, you could change the lighting level watt by watt
until it reached the desired level.

Third, you might be able to reduce sensitization effects by using good
placebo treatments. In this example, rather than using darkness as the control
condition, you could use light from a normal bulb as the control condition.

A General Strategy for Reducing Order Effects
To this point, we have given you some strategies to reduce practice effects, to
reduce fatigue effects, to reduce carryover effects, and to reduce sensitization
(see Table 13.5 for a review). However, by reducing the number of experi-
mental conditions, you can reduce all four causes of order effects at once
because there will be fewer opportunities for them to affect your study.

To see how fewer conditions leads to fewer order-effect problems, com-
pare a within-subjects experiment that has 11 conditions with one that has
only 2 conditions. In the 11-condition experiment, participants have
10 opportunities to practice on the dependent-measure task before they get
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the last treatment; in the 2-condition experiment, participants only have one
opportunity for practice. The 11-condition participants have 11 conditions to
fatigue them; 2-condition participants only have 2. In the 11-condition exper-
iment, there are 10 treatments that could carry over to the last trial; in the 2-
condition experiment there is only 1. Finally, in the 11-condition experiment,
participants have 11 chances to figure out the hypothesis; in the 2-condition
experiment, they only have 2 chances.

Mixing Up Sequences to Try to Balance Out Order Effects: Randomizing
and Counterbalancing
Although you can take steps to reduce the impact of order, you can never be
sure that you have eliminated its impact. Therefore, if you gave all your parti-
cipants Treatment A first and Treatment B second, you could not be sure that
the difference between the average of the Treatment A scores and the average
of the Treatment B scores was due to a treatment effect. Instead, the differ-
ence could simply be due to an order (trials: first vs. second) effect.

To avoid confusing an order (trials) effect for a treatment effect, you
should not give all your participants the same sequence of treatments. For
example, in a two-condition study, you should not give all of your partici-
pants the treatments in this sequence: Treatment A first, Treatment B second.
Instead, some participants should get the treatment sequence: Treatment B
first and then Treatment A.

TABLE 13.5
Order Effects and How to Minimize Their Impact

EFFECT EXAMPLE WAYS TO REDUCE IMPACT

Practice Effects Getting better on the task due
to becoming more familiar with
the task or with the research
situation.

Give extensive practice and
warm-up before introducing the
treatment.

Fatigue Effects Getting tired as the study wears
on.

Keep study brief, interesting.

Carryover
Effects

Effects of one treatment lin-
gering and affecting responses
on later trials.

Use few levels of treatment.

Allow sufficient time between
treatments for treatment effects
to wear off.

Sensitization As a result of getting many
different levels of the indepen-
dent variable, the participant—
during the latter part of the
study—becomes aware of what
the treatment is and what the
hypothesis is.

Use subtly different levels of the
treatment.

Gradually change treatment
levels.

Use few treatment levels.
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There are two basic approaches you could use to make sure that not all
participants get the treatments in the same sequence: (1) Randomize the
sequence of treatments for each participant, or (2) counterbalance the sequence
of treatments.

RANDOMIZED WITHIN-SUBJECTS DESIGNS
You can mix up the sequences by randomly determining, for each participant,
which treatment they get first, which treatment they get second, and so on. If
you use this randomization strategy to sequence each participant’s series of
treatments, you have a randomized within-subjects design.

Procedure
The randomized within-subjects design is very similar to the matched-pairs
design. For example, the procedural differences between the two-condition,
randomized, within-subjects experiment and matched-pairs experiment stem
from a single difference: In the within-subjects experiment, you get a pair of
scores from a single participant, whereas in the matched-pairs design, you
get a pair of scores from a matched pair of participants. Thus, in the
matched-pairs case, each participant only gets one treatment, but in the
within-subjects experiment, each participant gets two treatments.

Other than each participant receiving more than one treatment, the two
designs are remarkably similar. The matched-pairs researcher randomly deter-
mines, for each pair, who will get what treatment. In some pairs, the first mem-
ber will get Treatment A, whereas the second member will get Treatment B; in
other pairs, the first member will get Treatment B, whereas the second member
will get Treatment A.

The within-subjects researcher randomly determines, for each individual,
the sequence of the treatments. For some individuals, the first treatment will
be Treatment A (and the second treatment will be Treatment B); for other
individuals, the first treatment will be Treatment B (and the second treatment
will be Treatment A). In short, whereas the matched-pairs experimenter ran-
domly assigns members of pairs to different treatments, the within-subjects
experimenter randomly assigns individual participants to different sequences
of treatments.

To see the similarities and differences between the matched-pairs and
within-subjects designs, imagine that we are interested in whether observers’
judgments about other people are influenced by irrelevant information. Spe-
cifically, we want to see whether pseudorelevant information (information
that seems relevant but really isn’t relevant) affects whether observers see
others as passive or assertive. Therefore, we produce pseudorelevant descrip-
tions (“Bill has a 3.2 GPA and is thinking about majoring in psychology”)
and “clearly irrelevant” descriptions (“Bob found 20 cents in a pay phone in
the student union when he went to make a phone call”).

In a matched-pairs design, you would match participants—probably
based on how assertively they tend to rate people. Then, one member of the
pair would read a “pseudorelevant” description while the other read a
“clearly irrelevant” description. After reading the information, each partici-
pant would rate the assertiveness of the student he read about on a 9-point
scale ranging from “very passive” to “very assertive.”
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In a randomized within-subjects design, on the other hand, each partici-
pant would read both “pseudorelevant” and “clearly irrelevant” descriptions.
After reading the information, they would rate the assertiveness of each
of these students on a 9-point scale ranging from “very passive” to “very
assertive.” Thus, each participant would provide data for both the “pseudo-
relevant” condition and the “clearly irrelevant” condition. The sequence of
the descriptions would be randomized, with some sequences having the pseu-
dorelevant description first and others having the clearly irrelevant descrip-
tion first.

Hilton and Fein (1989) conducted such a randomized within-subjects
experiment and found that participants judged the students described by
pseudorelevant information as more assertive than students described by
clearly irrelevant information. Consequently, Hilton and Fein concluded that
even irrelevant information affects our judgments about people.

Analysis of Data
To analyze data from the two-condition within-subjects design, you can use
the same dependent groups t test that you used to analyze matched-pairs
designs.4 The only difference is that instead of comparing each member of
the pair with the other member of that pair, you compare each participant
with him or herself. Because the dependent groups t test can be used to ana-
lyze data from a within-subjects design, it can also be called the within-
subjects t test.

You do not have to use a within-subjects t test. For example, instead of
using a within-subjects t test (see Box 13.1), you could use a within-subjects
analysis of variance (see Box 13.2).

Conclusions About Randomized Within-Subjects Designs
As you might expect from two designs that can be analyzed with the same
technique, the randomized within-subjects design and the matched-pairs
design are very similar. In terms of procedures, the only real difference is
that the matched-pairs experimenter randomly assigns members of pairs to
treatments, whereas the randomized within-subjects experimenter randomly
assigns individual participants to sequences of treatments. Because both
designs have impressive power, both should be seriously considered if partici-
pants are scarce.

The randomized within-subjects design, however, has some unique
strengths and weaknesses stemming from the fact that it collects more than
one observation per participant (see Table 13.6). Because it uses individual par-
ticipants (rather than matched pairs) as their own controls, the randomized
within-subjects design is more powerful than the matched-pairs design—and
more useful when you want to generalize your results to real-life situations in
which individuals get more than one “treatment.” Thus, if you were studying
the effects of political ads, you might use a within-subjects design because, in
real life, a person is likely to be exposed to more than one political ad about a
candidate (Greenwald, 1976).

4 If you have more than two conditions, you cannot use a t test. Instead, you must use either
within-subjects analysis of variance (ANOVA) or multivariate analysis of variance (MANOVA).
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Although there are benefits to collecting more than one observation per
participant, having to contend with order effects (practice, fatigue, carryover,
and sensitization) is a major drawback. As we have suggested, you can try to
minimize order effects, and you can hope that randomizationwill balance out the
sequence of your treatments so that each condition comes first about the same
number of times as it comes last.

COUNTERBALANCED WITHIN-SUBJECTS DESIGNS
Instead of merely hoping that chance might balance out the sequence of your
treatments, you could make sure by using a counterbalanced within-subjects
design. In this design, as in all within-subjects designs, each participant gets
more than one treatment. Unlike other within-subjects designs, however, par-
ticipants are randomly assigned to systematically varying sequences of condi-
tions in a way that ensures that routine order effects are balanced out.5 Thus,
if you were studying two levels (A and B) of a factor, the counterbalanced
design would ensure that half your participants got Treatment A first and
that half got Treatment B first. Now that you understand the main objective
of counterbalancing, let’s look at an example to see how counterbalancing
achieves this goal.

Procedure
If you were to use a counterbalanced design to study a two-level factor, you
would randomly assign half of your participants to receive Treatment A first
and Treatment B second, whereas the other half would receive Treatment B
first and Treatment A second. By randomly assigning your participants to
these counterbalanced sequences, most order effects will be neutralized. For
example, if participants tend to do better on the second trial, this will not

TABLE 13.6
Comparing the Matched-Pairs Design With the Within-Subjects Design

MATCHED-PAIRS DESIGN WITHIN-SUBJECTS DESIGN

Powerful. More powerful.

Order effects are not a problem. Order effects are a serious problem.

Uses random assignment to balance
out differences between participants.

Uses randomization to balance out
order effects.

Useful for assessing variables that vary
between subjects in real life.

Useful for assessing variables that
vary within subjects in real life.

5 In football, for example, teams change sides every quarter and this usually balances out the
effects of wind. However, if the wind shifts in the fourth quarter, counterbalancing fails to bal-
ance out the effects of wind. Similarly, if basketball teams change sides at the end of every half
(as in international rules), but a rim gets bent (or fixed) during halftime, counterbalancing has
failed to balance out the effects of different baskets.
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help Treatment A more than Treatment B because both occur in the second
position equally often.

Advantages and Disadvantages of Counterbalancing
By using a counterbalanced design, you have not merely balanced out routine
order effects, but you have also added another factor to your design—the
between-subjects factor of counterbalancing sequence. Adding the factor of
counterbalancing sequence has two disadvantages and several advantages.

Disadvantages of Adding a Counterbalancing Factor
A minor disadvantage is that your statistical analysis is now more complex.
Rather than using the dependent (within-groups) t test, you now have to use
a mixed analysis of variance. This would be a major disadvantage if you had
to compute statistics by hand. However, because computers can do these
analyses for you, this disadvantage really is minor.

The major disadvantage of adding the two-level between-subjects factor
of counterbalancing sequence is that you now need more participants than
you did when you were planning to use a pure within-subjects design. You
need two groups of participants to determine whether the two-level between-
subjects factor of counterbalanced sequence has an effect. One of those
groups will receive the A–B sequence, the other will receive the B–A sequence.
To have enough power to see whether the A–B sequence leads to higher aver-
age scores than the B–A sequence, you will need at least 30 participants in
each group.6 In the pure within-subjects design, on the other hand, we were
not comparing one group against another. Thus, in a sense, by going from a
pure within-subjects design to a counterbalanced design, you are going from
having zero levels of a between-subjects factor to having two levels of a
between-subjects factor. As you may recall from our discussion of multiple-
group experiments (Chapter 11), the more levels of a between-subjects factor
you have, the more participants you need.

As you go beyond two levels of the independent variable, the number of
different possible sequences—and thus the levels of the between-subjects fac-
tor of counterbalancing—explodes. For example, if you have 3 levels, there
are 6 possible sequences (ABC, BCA, CAB, ACB, BAC, CBA), and thus coun-
terbalancing could be a 6-level factor; if you have 4 levels, counterbalancing
could be a 24-level factor, and if you have 5 levels, counterbalancing could
be a 120-level factor.

To avoid the problem of having too many levels of the between-subjects
factor of counterbalancing, you have two options. First, if you can administer
the same treatment more than once to the same participant, you can get by
with a single sequence. Ideally, this sequence would involve all possible orders
(e.g., ABC, BCA, CAB, ACB, BAC, CBA). However, if you could present
each treatment only twice, a sequence in which you first present the treat-
ments in one order (e.g., ABC) and then present them in the reverse order
(e.g., CBA) offers some protection from order effects. Thus, if you had five
treatments, you might present them in this sequence: ABCDEEDCBA.

6 In most cases, 30 participants per group is too few. Usually, researchers should have at least 60
participants per group (Cohen, 1990).
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Second, rather than randomly assigning participants to every possible
sequence (as you would in complete counterbalancing), you randomly assign
participants to as many sequences as you have levels of your independent var-
iable. Thus, if you have four treatments (A, B, C, and D), you would ran-
domly assign participants to four sequences.

The first key to this partial counterbalancing is to select a set of
sequences that, like complete counterbalancing, has every condition occur in
every position equally often (e.g., Treatment A occurs first just as often as it
occurs second, third, and fourth—and what is true of Treatment A is true of
all your treatments). The simplest way to do this is to have each condition
appear once in each position. Thus, if you had four treatments, treatment A
would appear first in one sequence, second in one sequence, third in one
sequence, and fourth in one sequence—and the same would be true of treat-
ments B, C, and D.

The second key to this partial counterbalancing is to have each condition
come before every other condition just as many times as it comes after that
condition (e.g., Treatment A comes before Treatment B twice and after Treat-
ment B twice). To get such a set of sequences, you would use a Latin Square
(see Box 13.3). Note, however, that even with partial counterbalancing, you
need more participants than you would with a pure, randomized within-
subjects design.

BOX 13.3 Latin Square Designs: The ABCs of Counterbalancing
Complex Designs

You have seen an example of the simplest form of
counterbalancing in which one group of participants
gets Treatment A followed by Treatment B (AB) and a
second group gets Treatment B followed by
Treatment A (BA). This simple form of
counterbalancing is called AB, BA counterbalancing.
Note that even this simple form of counterbalancing
accomplishes two goals.

First, it guarantees every condition occurs in
every position, equally often. Thus, in AB, BA
counterbalancing, A occurs in first half the time and
last half the time. The same is true for B: For half the
participants, B is the first treatment they receive; for
the other half, B is the last treatment they receive.

Second, each condition precedes every other
condition just as many times as it follows that
condition. That is, in AB, BA counterbalancing, A
precedes B once and follows B once. This symmetry
is called balance.

Although achieving these two objectives of
counterbalancing is easy with only two conditions,
with more conditions, counterbalancing becomes
more complex. For example, with four conditions (A,
B, C, D) you would have four groups. To determine
what order the groups will go through the conditions,
you would consult the following 4 × 4 Latin Square:

POSITION

1 2 3 4

Group 1 A B D C

Group 2 B C A D

Group 3 C D B A

Group 4 D A C B

(Continued)
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Advantages of Adding a Counterbalancing Factor
The disadvantage of needing more participants is sometimes offset by being
able to discover more effects. With the two-condition within-subjects experi-
ment, you can obtain only one main effect (the treatment main effect). By
adding the two-level factor of counterbalancing sequence, you converted the
two-condition experiment into a 2 (the within-subjects factor of treatment)
× 2 (the between-subjects factor of counterbalancing sequence) experiment,
thus giving you more information. Specifically, you can look for two main
effects and an interaction (see Table 13.7). By looking at these three effects,
you can find out three things.

First, as was the case with the pure within-subjects design, you can find
out whether the treatment had an effect by looking at the treatment main
effect. In the experiment described in Table 13.7, you can look at the treat-
ment main effect to find out whether forming images of words is a more
effective memory strategy than making sentences out of the words.

Second, by looking at the counterbalancing sequence main effect, you
find out whether the group of participants getting one sequence of treatments
(A–B) did better than the participants getting the other (B–A) sequence. In the
experiment described in Table 13.7, the question is, “Did Group 1 (who

In this 4 × 4 complete Latin Square, Treatment Aoccurs
in all four positions (first, second, third, and fourth), as
do Treatments, B, C, and D. In addition, the square has
balance. As you can see from looking at the square,
every letter precedes every other letter twice and
follows every other letter twice. For example, if you just
look at Treatments A and D, you see that A comes
before D twice (in Groups 1 and 2) and follows D twice
(in Groups 3 and 4).

Balance is relatively easy to achieve for 2, 4, 6, 8,
or even 16 conditions. But, what if you have 3
conditions? Immediately you recognize that with a
3 × 3 Latin Square, A cannot precede B the same
number of times as it follows B. Condition A can
either precede B twice and follow it once or precede
it once and follow it twice. Thus, with an uneven
number of conditions, you cannot create a balanced
Latin Square.

One approach to achieving balance when you
have an uneven number of treatment levels is to add
or subtract a level so you have an even number of
levels. However, adding a level may greatly increase
the number of sequences and groups you need.
Subtracting a level, on the other hand, may cause you
to lose vital information. Therefore, you may not wish

to alter your study to obtain an even number of levels.
Fortunately, you can achieve balance with an uneven
number of treatment levels by using two Latin
Squares.* For instance, consider the 3 × 3 squares
below.

If you randomly assign subjects to six groups, as
outlined above, you ensure balance. See for yourself
that if you take any two conditions, one condition will
precede the other three times and will be preceded
by the other condition three times.

SQUARE 1

POSITION

SQUARE 2

POSITION

1 2 3 1 2 3

Group 1 A B C Group 4 C B A

Group 2 B C A Group 5 A C B

Group 3 C A B Group 6 B A C

*Another option is to use incomplete Latin Square designs.
However, the discussion of incomplete Latin Square designs is
beyond the scope of this book.

BOX 13.3 Continued
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formed images first and then formed sentences) recall more words than
Group 2 (who formed sentences first and then formed images)?”

Third, by looking at the treatment × counterbalancing interaction, you
find out whether participants score differently on their first trial than on
their second. Looking at the treatment × counterbalancing interaction allows
you to detect what some people call a “trials effect” and what others call an
“order effect.”

But how can looking at an interaction tell you that participants score dif-
ferently on the first trial than the second? After all, significant interactions
usually indicate exceptions to general rules rather than indicating a general
rule such as, “participants do better on the first trial.”

The first step to seeing why a significant treatment × counterbalancing
interaction tells you that participants score differently on the first trial than
on the second is to imagine such an interaction. Suppose that participants
who get Treatment A first score highest after receiving Treatment A, but par-
ticipants who get Treatment B first score highest after receiving Treatment B.
At one level, this is an interaction: The rule that participants score highest
when receiving Treatment A only holds when they receive Treatment A first.
However, the cause of this interaction is an order (trials) effect: Participants
score highest on the first trial.

TABLE 13.7
A 2 × 2 Counterbalanced Design

The members of the first group get a list of words, are asked to form images of these
words, and are asked to recall these words. Then, they get a second list of words, are
asked to form a sentence with these words, and are asked to recall the words.

The members of the second group get a list of words, are asked to form a sentence
with these words, and are asked to recall these words. Then, they get a second list of
words, are asked to form images of those words, and are asked to recall those
words.

GROUP 1

First Task Second Task
Form Images Form Sentences

GROUP 2

First Task Second Task
Form Sentences Form Images

Questions this study can address include the following:

1. Do people recall more when asked to form sentences than when asked to form
images?

2. Do Group 1 participants recall more words than Group 2 participants? In other
words, is one sequence of using the two different memory strategies better than
the other?

3. Do people do better on the first list of words they see than on the second? That
is, does practice help or hurt?
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To get a clearer idea of what a counterbalanced study can tell us, let’s
look at data from the memory experiment we mentioned earlier. In that
experiment, each participant learned one list of words by making a sentence
out of the list and learned one list of words by forming mental images. Thus,
like a within-subjects design, each participant’s performance under one treat-
ment condition (sentences) was compared with that same participant’s perfor-
mance under another treatment condition (images).

Like a two-group between-subjects design, participants were randomly
assigned to one of two groups. As would be expected from a counterbalanced
design, the groups differed in terms of the counterbalanced sequence in which
they received the treatments. Half the participants (the group getting the sentence–
image sequence) formed sentences for the first list, then formed images to recall the
second list. The other half (the group getting the image–sentence sequence) formed
images to recall the first list, then formed sentences to recall the second list.

Now that you have a basic understanding of the study’s design, let’s exam-
ine the study’s results. To do so, look at both the table of means for that study
(Table 13.8) and the analysis of variance summary table (Table 13.9).

TABLE 13.8
Table of Means for a Counterbalanced Memory Experiment

MEMORY STRATEGY

GROUP’S SEQUENCE IMAGES SENTENCES IMAGES–SENTENCES DIFFERENCE

Group 1 (images first,
sentences second)

8 6 þ2

Group 2 (sentences
first, images second)

6 8 �2

14/2 ¼ 7 14/2 ¼ 7 Strategy

Main Effect ¼ 0

Counterbalancing Main Effect ¼ 0

On the average, participants in both groups remembered a total of 14 words (8 in
one condition, 6 in another)

Strategy Effect ¼ 0

Average recalled in image condition was 7 ([8 þ 6]/2).

Average recalled in sentence condition was 7([6 þ 8]/2).

Order Effect ¼ þ2

Participants remember the first list best.

They averaged 8 words on the first list, 6 on the second.

The order (first vs. second) effect is revealed by an interaction involving counterba-
lancing group and rehearsal strategy.

That is, Group 1 did better in the image condition (8 to 6), but Group 2 did better
in the sentence condition (8 to 6).
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By looking at Table 13.9, we see that the main effect for the between-subjects
factor of counterbalanced sequence is not significant.AsTable 13.8 shows,members
of both groups recalled, on the average, 14 words in the course of the experiment.
Participants getting the treatment sequence A–B did not, on the average, recall more
words than participants getting the sequence B–A.

Next, we see that the within-subjects factor of the memory strategy factor
was also not significant. Because participants recalled the same number of
words in the imagery condition (7) as they did in the sentence condition (7),
we have no evidence that one strategy is superior to the other. Thus, there is
no treatment effect.

Finally, we have a significant interaction of memory strategy and group
sequence. By looking at Table 13.8, we see that this interaction is caused by
the fact that Group 1 (which gets images first) recalled more words in the
imagery condition whereas Group 2 (which gets sentences first) recalled
more words in the sentences condition. In other words, participants do better
on the first list than on the second.

What does this order (trials) effect mean? If the researchers were not care-
ful in their selection of lists, the order effect could merely reflect the first list
being made up of words that were easier to recall than the second list. The
researchers, however, should not have made that mistake.7 Therefore, if
the experiment were properly conducted, the order effect must reflect either

TABLE 13.9
ANOVA Summary Table for a Counterbalanced Design

ANALYSIS OF VARIANCE TABLE

SOURCE SS df MS F P

Group Sequence
(counterbalancing)

0 1 0 0 n.s.*

Error Term for Between-Subjects 44 22 2

Factor Memory Strategy 0 1 0 0 n.s.

Interaction Between Memory
Strategy and Group Sequence

10 1 10 10 p< .01

(effect of order—first vs. second
list) Within-Subjects Error Term

23 23 1.0

*n.s. is an abbreviation for not statistically significant.
Note: “p” values in an ANOVA summary table indicate the probability that the researchers could get
differences between their conditions that were this big even if the variables were not related. That is, the
p values tell you the probability that the difference between the groups could occur due to chance
alone. Thus, the smaller the p value, the less likely the results are due only to chance—and the more
likely that the variables really are related.

7There are at least three ways to avoid this mistake: (a) extensively pretest the lists to make sure
that both are equally memorable, (b) consult the literature to find lists that are equally memora-
ble, and (c) counterbalance lists so that, across participants, each list occurred equally often
under each instructional condition. The third approach is probably the best.
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the effects of practice, fatigue, treatment carryover, or sensitization. In this
case, it probably reflects the fact that the practice participants get on the first
list hurts their memory for the second list. Psychologists do not consider this
negative practice effect a nuisance. On the contrary, this negative practice effect
is one of the most important and most widely investigated facts of memory—
proactive interference.

Now that you understand the three effects (two main effects and the
treatment � counterbalancing interaction) that you can find with a 2 � 2
counterbalanced design, let’s look at an experiment where the researcher is
interested in all three effects. Suppose that Mary Jones, a politician, produces
two commercials: an emotional commercial and a rational commercial. She
hires a psychologist to find out which commercial is most effective so she’ll
know which one to give more airtime. The researcher uses a counterbalanced
design to address the question (see Table 13.10).

By looking at the treatment main effect, the researcher is able to answer the
original question, “Which ad is more effective?” By looking at the counterba-
lancing sequence main effect, the researcher is able to find out whether one
sequence of showing the ads is better than another, thus enabling him to answer
the question, “Should we show the emotional ad first and then the rational ad
or should we show the ads in the opposite sequence?” Finally, by looking at
the ad � counterbalancing interaction, the researcher is able to determine if
there is an order (trials) effect, leading him to be able to answer the question,
“Are participants more favorable toward the candidate after they’ve seen the

TABLE 13.10
Effects Revealed by a 2 × 2 Counterbalanced Design

GROUP 1

First Ad Second Ad

Emotional Ad Rational Ad

GROUP 2

First Ad Second Ad

Rational Ad Emotional Ad

Questions Addressed by the Design:

1. Is the rational ad more effective than the emotional ad? (Main effect of the
within-subjects factor of type of ad)

2. Is it better to show the emotional ad and then the rational ad or the rational
ad and then the emotional ad? (Main effect of the between-subjects factor of
counterbalancing sequence)

3. Are attitudes more favorable to the candidate after seeing the second ad than
after seeing the first? (Ad by counterbalancing interaction)
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second ad?” Obviously, he would expect that voters would rate the candidate
higher after seeing the second ad than they did after seeing the first ad.

Let’s suppose that all three effects were statistically significant and the
means were as follows:

TYPE OF AD

Emotional Ad Rational Ad

Group 1: (Emotional–Rational sequence) 4 6

Group 2: (Rational–Emotional sequence) 8 7

Note: Scores are rating of the candidate on a 1 (strongly disapprove of) to 9 (strongly approve of) scale.

As you can see from comparing the emotional ad column with the ratio-
nal ad column, the treatment main effect is due to the rational ad, on the
average, being more effective than the emotional ad. As you can see from
comparing the Group 1 row with the Group 2 row, Group 2 likes the candi-
date more than Group 1. Thus, the between-groups counterbalancing
sequence main effect suggests that it would be better to present the ads in the
Rational–Emotional sequence (Group 2’s sequence) than in the Emotional–
Rational sequence (Group 1’s sequence).

The table doesn’t make it as easy to see the order effect. To see whether
participants liked the candidate better after the second trial than after the
first, this table makes you interpret the treatment × counterbalancing interac-
tion. To help you find the order effect in this table, we have underlined the
mean for the ad that each group saw first. Thus, we underlined 4 because
Group 1 saw the emotional ad first, and we underlined 7 because Group 2
saw the rational ad first. By recognizing that 4 þ 7 is less than 8 þ 6, you
could determine that scores were lower on the first trial than on the second.
To better see the order effect, you should rearrange the table so that the col-
umns represent “Order of Ads” rather than “Type of Ad.” Your new table
would look like this:

ORDER OF ADS

First Ad Second Ad

Group 1: (Emotional–Rational sequence) 4 6

Group 2: (Rational–Emotional sequence) 7 8

As you can see from this table, the order effect reveals that people like the
candidate more after the second ad. The ads do build on each other.

It’s possible, however, that the consultant may not have obtained an
order effect. For example, suppose the consultant obtained the following pat-
tern of results:
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TYPE OF AD

Emotional Ad Rational Ad

Group 1: (Emotional–Rational sequence) 5 6

Group 2: (Rational–Emotional sequence) 5 6

In this case, Group 1 participants (who get the rational ad last) and
Group 2 participants (who get the rational ad first) both rate the candidate
one point higher after seeing the rational ad than they do after seeing the
emotional ad. Thus, there is no treatment by counterbalancing interaction.
Because there is no treatment × counterbalancing interaction, there is no
order effect. However, an easier way to see that there was no order effect
would be to create the following table.

ORDER OF ADS

First Ad Second Ad

Group 1: (Emotional–Rational sequence) 5 6

Group 2: (Rational–Emotional sequence) 6 5

With these data, the consultant would probably decide to just use the rational ad.
Instead of obtaining no order effect, the consultant could have obtained

an order effect such that people always rated the candidate worse after the
second ad. For example, suppose the consultant obtained the following
results:

ORDER OF ADS

First Ad Second Ad

Group 1: (Emotional–Rational sequence) 5 4

Group 2: (Rational–Emotional sequence) 6 4

If the consultant obtained these results, he would take a long, hard look
at the ads. It may be that both ads are making people dislike the candidate,
or it may be that the combination of these two ads does not work. Seeing
both ads may reduce liking for the candidate by making her seem inconsis-
tent. For example, one ad may suggest that she supports increased military
spending while the other may suggest that she opposes increased military
spending.

Conclusions About Counterbalanced Within-Subjects Designs
As you can see from this last example, the counterbalanced design does more
than balance out routine order effects. It also tells you about the impact of
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both trials (order: first vs. second) and sequence (e.g., rational then emotional
ad vs. emotional ad then rational ad). Therefore, you should use counterba-
lanced designs when

1. you want to make sure that routine order effects are balanced out
2. you are interested in sequence effects
3. you are interested in order (trials) effects

You will usually want to balance out order effects because you don’t want
order effects to destroy your study’s internal validity. That is, you want a sig-
nificant treatment main effect to be due to the treatment, rather than to order
effects.

You will often be interested in sequence effects because real life is often a
sequence of treatments (Greenwald, 1976). That is, most of us are not
assigned to receive either praise or criticism; to see either ads for a candidate
or against a candidate; to experience only success or failure, pleasure or pain,
and so on. Instead, we usually receive both praise and criticism, see ads for
and against a candidate, and experience both success and failure. Counterba-
lanced designs allow us to understand the effects of receiving different
sequences of these “treatments.” In counterbalanced designs, the main effect
for the between-subjects factor of counterbalancing sequence can help you
answer questions like the following:

● Would it be better to eat and then exercise—or to exercise and then eat?
● Would it be better to meditate and then study—or to study and then

meditate?
● If you are going to compliment and criticize a friend, would you be better

off to criticize, then praise—or to praise, then criticize?

Order (trials) effects, on the other hand, will probably interest you if you
can control whether a particular event will be first or last in a series of events.
Thus, you might be interested in using a counterbalanced design to find out
whether it’s best to be the first or the last person interviewed for a job. Or, if
you want to do well in one particular course (research methods, of course),
should you study the material for that course first or last? To find out about
these order effects, you’d use a counterbalanced design and look at the treat-
ment × counterbalancing interaction.

CHOOSING THE RIGHT DESIGN
If you want to compare two levels of an independent variable, you have sev-
eral designs you can use: matched pairs, within-subjects designs, counterba-
lanced designs, and the simple between-subjects design. To help you choose
among these designs, we will briefly summarize the ideal situation for using
each design.

Choosing a Design When You Have One Independent Variable
The matched-groups design is ideal when

1. you can readily obtain participants’ scores on the matching variable
without arousing their suspicions about the purpose of the experiment
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2. the matching variable correlates highly with the dependent measure
3. participants are scarce

The pure within-subjects design is ideal when

1. sensitization, practice, fatigue, or carryover effects are not problems
2. you want a powerful design
3. participants are scarce
4. you want to generalize your results to real-life situations, and in real life,

individuals tend to be exposed to both levels of the treatment

The 2 × 2 counterbalanced design is ideal when

1. you want to balance out the effects of order
2. you are interested in order effects, sequence effects, or both
3. you have enough participants to meet the requirement of a counterba-

lanced design
4. you are not concerned that being exposed to both treatment levels will

alert participants to the purpose of the experiment

The pure between-subjects design is ideal when

1. you think fatigue, practice, sensitization, or carryover effects could affect
the results

2. you have access to a relatively large number of participants
3. you want to generalize your results to real-life situations, and in real life,

individuals tend to receive either one treatment or the other, but not both

Choosing a Design When You Have More Than
One Independent Variable
Thus far, we have discussed how to choose a design when you are studying
the effects of a single variable (see Table 13.11). Often, however, you may
want to investigate the effects of two or more variables.

In that case, you would appear to have three choices: a between-subjects
factorial design, a within-subjects factorial design, and a counterbalanced
design. However, counterbalancing becomes less attractive—especially for the
beginning researcher—as the design becomes more complicated. Thus, as a
general rule, beginning researchers who plan on manipulating two indepen-
dent variables usually are choosing between a two-factor within-subjects
design and a two-factor between-subjects design.

Using a Within-Subjects Factorial Design
You should use a pure within-subjects design when

1. you can handle the statistics (you will have to use within-subjects analysis
of variance or multivariate analysis of variance)

2. sensitization, practice, fatigue, and carryover effects are not problems
3. you are concerned about power
4. in real-life situations, people are exposed to all your different combina-

tions of treatments
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Using a Between-Subjects Factorial Design
On the other hand, you should use a between-subjects design when

1. you are worried about the statistics of a complex within-subjects design
2. you are worried that order effects would destroy the internal validity of a

within-subjects design
3. you are not worried about power
4. in real-life situations, people are exposed to either one combination of

treatments or another

Using a Mixed Design
Sometimes, however, you will find it difficult to choose between a completely
within-subjects design and a completely between-subjects design. For exam-
ple, consider the following two cases.

Case 1: You are studying the effects of brain lesions and practice on how well rats
run mazes. On the one hand, you do not want to use a completely within-subjects
design because you consider brain damage to occur “between subjects” in real life
(because some individuals suffer brain damage and others do not). On the other
hand, you do not want to use a completely between-subjects design because you

TABLE 13.11
Ideal Situations for Different Designs

SIMPLE EXPERIMENT MATCHED GROUPS WITHIN-SUBJECTS

COUNTERBALANCED

DESIGN

Participants are
plentiful.

Participants are very scarce. Participants are
very scarce.

Participants are some-
what scarce.

Order effects
could be a problem.

Order effects could be a
problem.

Order effects are
not a problem.

Want to assess order
effects or order effects
can be balanced out.

Power isn’t vital. Power is vital. Power is vital. Power is vital.

In real life, people
usually only get one
or the other treat-
ment, rarely get both.

In real life, people
usually only get one
or the other treatment, rarely
get both.

In real life, people usually get
both treatments, rarely get
only one or the other.

In real life, people usu-
ally get both treat-
ments, rarely get only
one or the other.

Multiple exposure to
dependent measure
will tip participants
off about hypothesis.

Exposure to matching vari-
able will not tip
participants off about
hypothesis.

Multiple exposure to depen-
dent measure will not tip
participants off about
hypothesis.

Multiple exposure to
dependent measure will
not tip participants off
about hypothesis.

Exposure to different
levels of the indepen-
dent variable will tip
participants off about
hypothesis.

Exposure to different levels
of the independent variable
will tip participants off
about hypothesis. Matching
variable is easy to collect and
correlates highly with
the dependent measure.

Exposure to different levels
of the independent variable
will not tip participants off
about hypothesis.

Exposure to different
levels of the indepen-
dent variable will not
tip participants off
about hypothesis.
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think that practice occurs “within subjects” in real life (because all individuals get
practice and, over time, the amount of practice an individual gets increases).

Case 2: You are studying the effects of subliminal messages and electroconvulsive
therapy on depression. You expect that if subliminal messages have any effect, it
will be so small that only a within-subjects design could detect it. However, you
feel that electroconvulsive shock should not be studied in a within-subjects design
because of huge carryover effects (see Table 13.12).

Fortunately, in these cases, you are not forced to choose between a totally
within-subjects factorial and a totally between-subjects factorial. As you
know from our discussion of counterbalanced designs, you can do a study in
which one factor is varied between subjects and the other is varied within
subjects. Such designs, called mixed designs, are analyzed using a mixed anal-
ysis of variance. (To learn how to interpret the results of a mixed analysis of
variance, see Box 13.4.)

In both Case 1 and Case 2, the mixed design allows us to have both inter-
nal validity and power. In Case 1, we could make lesions a between-subjects
variable by randomly assigning half the participants to get lesions and half
not. That way we do not have to worry about carryover effects from the
brain lesions. We could make practice a within-subjects variable by having
each participant run the maze three times. Consequently, we have the power
to detect subtle differences due to practice (see Table 13.13 and Figure 13.1).

In Case 2, we could make ECS therapy a between-subjects variable by
randomly assigning half the participants to get electroconvulsive (ECS) ther-
apy and half not. That way, we do not have to worry about carryover effects
from the ECS. Then, we would expose all participants to a variety of sublimi-
nal messages, some designed to boost mood and some to be neutral. By com-
paring the average overall depression scores from the ECS therapy group to
that of the no-ECS group, we could assess the effect of ECS. By comparing
participants’ scores following the “positive” subliminal messages to their
scores following “neutral” subliminal messages, we could detect even rather
subtle effects of subliminal messages.

In a mixed design, you are able to test not only the main effects of two
treatments but also the interaction of those treatments. In Case 1, the interest-
ing statistical effects will probably involve the interaction rather than the two

TABLE 13.12
Ideal Situations for Making a Factor Between or Within

Should a Factor Be a Between-Subjects Factor or a Within-Subjects Factor?

MAKE FACTOR BETWEEN SUBJECTS MAKE FACTOR WITHIN SUBJECTS

Order effects pose problems. Order effects are not a problem.

Lack of power is not a concern. Lack of power is a serious concern.

You want to generalize the results
to situations in which participants
receive either one treatment or another.

You want to generalize the results to
situations in which participants receive
all levels of the treatment.
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BOX 13.4 Not Getting Mixed Up About Mixed Designs

If you use a mixed design, you will probably have a
computer analyze your data for you. Often, both
entering the data and interpreting the printout are
straightforward. For example, suppose you had two
groups (one received Treatment X, the other
Treatment Y), had each participant go through three
trials, and collected the following data.

PARTICIPANT GROUP TRIAL 1 TRIAL 2 TRIAL 3

Steve X 1 3 7

Mary X 2 4 6

Todd X 3 6 7

Melissa X 4 5 7

Tom Y 4 5 7

Amy Y 5 4 7

Rob Y 4 5 6

Kara Y 4 4 7

You might input the data as follows.

GROUP TRIAL 1 TRIAL 2 TRIAL 3

1 1 3 7

1 2 4 6

1 3 6 7

1 4 5 7

2 4 5 7

2 5 4 7

2 4 5 6

2 4 4 7

Your printout might be relatively straightforward and
resemble the following.

T 1 MEAN T 2 MEAN T 2 MEAN

Group 1 2.5 4.5 6.75

Group 2 4.25 4.5 6.75

Total 3.375 4.5 6.75

BETWEEN Ss
Source SS df MS F p

A 2.04 1 2.04 1.69 .24

Error term 7.25 6 1.21

WITHIN Ss

B 47.25 2 23.63 47.26 <.001

A × B 4.08 2 2.04 4.08 .044

Error term 6.0 12 .5

However, in some programs, entering your data and
interpreting the printout can be more complicated. To
make sure that the computer has done the analysis
you expected, check your printout carefully.

If your printout contains only one error term, the
computer is analyzing your data as if you have a
completely between-subjects design. If you take the
MS for any treatment or interaction and divide it by
your one and only MSE, you will get the F for that
effect.

If, on the other hand, every main effect and every
interaction has its own error term, the computer is
analyzing your data as if you have a completely within-
subjects design. In that case, if you have three effects
(two main effects and an interaction effect), you will
have three error terms.

Even if the computer seems to be analyzing your
study as a mixed design, check the computer printout
to be sure that it has correctly identified which factors
are within and which are between. Start by looking at
the degrees of freedom for all your main effects. If
your between-subjects factor(s) have more levels
than your within-subjects factor(s), then the degrees
of freedom for your between-subjects main effect
should be larger than the degrees of freedom for your
within-subjects main effect. In any event, make sure
that the df for each of your variable’s main effects is
one fewer than the number of levels of that variable.
For example, if you have 4 levels of the between
variable and 2 levels of the within variable, be sure
that the degrees of freedom for the between variable
is 3 and that the degrees of freedom for the within
variable is 1.

Next, focus on your between-subjects factor(s).
All between-subjects main effects—and all

(Continued)
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main effects. That is, we would not be terribly surprised to find a main effect
for lesion, telling us that the brain-lesioned rats performed worse.8 Nor
would we be surprised to find a main effect for practice, telling us that parti-
cipants improve with practice. However, we would be interested in knowing
about the practice × lesion interaction. A significant practice × lesion interac-
tion would tell us that one group of rats was benefiting from practice more
than another. In this case, as you can see from Figure 13.1, the nonlesion

TABLE 13.13
Analysis of Variance Summary Table for a Mixed Design

SOURCE OF VARIANCE dF SS MS F P

Brain Lesion 1 51.0 51.0 10.0 .0068

Between-Subjects Error 14 72.4 5.1

Trials 2 26.6 13.3 11.1 .0003

Lesions � Trials 2 13.7 6.8 5.7 .0083

Within-Subjects Error 28 33.6 1.2

Note: The mean square error for the within-subjects term is much smaller than the between-subjects
error term (1.2 to 5.1), giving the design tremendous power for detecting within-subjects effects. This
table corresponds to the graph in Figure 13.1.

interactions that involve only between-subjects
factors—should be tested against a single error term.
To guarantee this, divide the MS for each between
factors main effect and each exclusively between
factors interaction by the MS for the between-
subjects error term. In every case, you should get the
same F that is reported in the printout.

To double-check that the computer correctly
identified all the between-subjects variables, add up
the degrees of freedom for all the between-subjects
main effects, the df for the interactions that involved
only between-subjects factors, and the df for the
between-subjects error term. The total of these
degrees of freedom should be one fewer than the
number of participants.

Next, check the within factors. Each within-
subjects main effect and each interaction that

involves only within-subjects factors should be tested
against a different error term.

Finally, look at interactions in which at least one
variable is a between factor and at least one variable is a
within factor. To find the appropriate error term for these
interactions, attend only to the within-subjects factors:
Ignore the between-subjects factors. If A is a within
factor and B is a between factor and you see an A × B
interaction, this interaction should be tested against the
same error term that A is tested against. If A is a within
factor and B and C are between factors, the error term
for the A × B × C interaction should still be the same
error term that was used for testing A. If it is not, there
is a mix-up about which of your factors are within and
which are between.

BOX 13.4 Continued

8The lesion main effect would be especially unsurprising if our control group didn’t get any sur-
gery. However, such empty control groups are rare. Typically, the control group would be a
“sham lesion” control group that got brain surgery and was treated the same as the treatment
group except that, instead of being injected with a chemical that would destroy (lesion) part of
the brain, they would be injected with a harmless saline solution.
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group benefits most from practice. In Case 2, although we would be inter-
ested in both the ECS and subliminal message main effects, we might be
most interested in the interaction between ECS and subliminal messages:
Such an interaction would tell us whether the ECS group was more influenced
by the subliminal messages than the no-ECS group.

In many mixed designs, both a main effect and the interaction will be of
interest. For example, Hebl and Mannix (2003) found a between-subjects
main effect indicating that participants who saw a picture of a male job appli-
cant sitting next to an overweight woman rated the job applicant more
harshly than participants who saw a picture of the same man sitting next to
an average-weight woman. This between-subjects main effect was of interest.
The interaction between this main effect and the within-subjects variable of
rating dimension (willingness to hire applicant, applicant’s professional quali-
ties, applicant’s interpersonal skills) was also of interest because Hebl and
Mannix wanted to see whether being seen with an overweight woman influ-
enced hiring judgments more than it affected judgments about the applicant’s
interpersonal skills.

Note the problems Hebl and Mannix would have had in interpreting
their results if they had used either a completely within-subjects or a
completely between-subjects design. If they had used a completely within-
subjects design, each participant would rate the applicant both (1) after seeing
the applicant in the presence of an overweight woman and (2) after seeing the
applicant in the presence of an average-weight woman. Participants would
have found the study strange and would probably have figured out the
hypothesis, thereby making the weight of woman main effect hard to
interpret.

If Hebl and Mannix had used a completely between-subjects design, one
group of participants would make hiring judgments, another group would
make interpersonal skills judgments, and yet another group would make
judgments about the applicant’s professional qualities. Because each partici-
pant would be providing one set of ratings rather than the three sets that
Hebl and Mannix’s participants did, each participant in a between-subjects
design would be providing only 1/3 as much data as the participants in Hebl
and Mannix’s actual study. Because participants would be providing less
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data, the study would have been less powerful than Hebl and Mannix’s
actual study. Thus, if Hebl and Mannix had used a completely between-
subjects design and failed to find an effect for the interaction, a scientist read-
ing their work would wonder whether they would have succeeded in finding
an interaction had they used a more powerful design.

As you can see from Hebl and Mannix’s study and from our two hypo-
thetical cases (Case 1 and Case 2), the mixed design has two major strengths.
First, it allows you to examine the effects of two independent variables and
their interaction. Second, instead of trading off the needs of one variable for
the needs of another, you are able to give both variables the design they
need. Because of its versatility, the mixed design is one of the most popular
experimental designs.

CONCLUDING REMARKS
This chapter has expanded your ability to read about and conduct research.
When reading reports of either within-subjects or mixed designs, you now
know to ask

1. whether the multiple measures and manipulations may have led partici-
pants to figure out the hypothesis

2. what steps (e.g., counterbalancing) were taken to reduce order effects
(practice, fatigue, carryover, and sensitization)—and whether those steps
were sufficient to ensure the study’s internal validity

3. whether a between-subjects design might have been more internally valid

When planning, conducting, or analyzing research, you now can

1. do experiments to determine the effect of a treatment and have a reason-
able chance of finding the treatment effect even if the effect is small and
you have access to only a few participants

2. replicate between-groups experiments that failed to find an effect with a
more powerful design that is more likely to find an effect

3. use counterbalancing to control for order effects
4. take steps to minimize practice, fatigue, carryover, and sensitization,

thereby minimizing order effects
5. do research assessing the effects of order (trials) and the effect of interac-

tions involving trials (e.g., does the effect of one treatment get stronger
when it is repeatedly presented whereas the effect of another treatment
weakens with repeated exposures?)

6. do research to determine the effect of different treatment sequences (e.g.,
is it more effective to have cognitive therapy followed by antidepressants
or to have antidepressants followed by cognitive therapy?)

7. determine whether you should use a pure between-subjects experiment, a
matched-pairs experiment, a within-subjects design, or a mixed design

8. interpret computer printouts of analysis of variance (ANOVA) analyses
of within-subjects as well as mixed designs
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SUMMARY
1. The matched-pairs design uses matching to

reduce the effects of random differences
between participants and uses random
assignment and statistics to account for the
remaining effects of random error. Because of
random assignment, the matched-pairs design
has internal validity. Because of matching, the
matched-pairs design has power.

2. Because the matched-pairs design gives you
power without limiting the kind of partici-
pant you can use, you may be able to gener-
alize your results to a broader population
than if you had used a simple experiment.

3. The matched-pairs design’s weaknesses stem
from matching: Matching may sensitize par-
ticipants to your hypothesis and participants
may drop out of the study between the time
of the matching and the time the experiment
is performed.

4. Within-subjects designs are also known as
repeated-measures designs.

5. The two-condition within-subjects design
gives you two scores per participant.

6. The within-subjects design increases power
by eliminating random error due to individ-
ual differences and by increasing the number
of observations that you obtain from each
participant.

7. Both the matched-pairs design and the two-
condition pure within-subjects design can be
analyzed by the dependent groups t test.
Complex within-subjects designs require
more complex analyses. Specifically, they
should be analyzed by within-subjects analy-
sis of variance (ANOVA) or by multivariate
analysis of variance (MANOVA).

8. Because of practice, fatigue, carryover, and
sensitization effects, the participant may
respond one way if receiving a treatment first
and a different way if receiving the treatment
last. These order effects may make it difficult
to assess a treatment’s real effect.

9. To reduce the effects of order, you should
randomly determine the sequence in which
each participant will get the treatments or use
a counterbalanced design.

10. In the counterbalanced design, participants
are randomly assigned to systematically
varying sequences of conditions to ensure that
routine order effects are balanced out.

11. Order effects (often called trials effects) are
different from sequence effects. Order effects
refer to whether participants respond differ-
ently on one trial (e.g., the first) than on some
other trial (e.g., the last). Order is a within-
subjects factor in a counterbalanced design.

12. Order effects can be detected by looking at
the treatment � counterbalancing sequence
interaction.

13. Sequence effects refer to whether participants
respond differently to getting a series of
treatments in one sequence than getting the
treatments in a different sequence. For example,
the group of participants who get the treat-
ments arranged in the sequence Treatment A,
then Treatment B may have higher overall
average scores than the group of participants
who get the treatments arranged in the
sequence Treatment B, then Treatment A.
Sequence is a between-subjects factor.

14. A counterbalanced design allows you to
assess the effect of (a) the treatment, (b)
receiving different counterbalanced sequences
of treatments, and (c) order (whether partici-
pants respond differently on the first trial
than on the last).

15. Because you must include the between-
subjects factor of counterbalancing in your
analyses, counterbalanced designs require
more participants than pure within-subjects
designs.

16. If you want to compare two levels of an
independent variable, you can use a matched-
pairs design, a within-subjects design, a
counterbalanced design, or a simple between-
subjects design.

17. Mixed designs have both a within- and a
between-subjects factor. Counterbalanced
designs are one form of a mixed design.

18. Mixed designs should be analyzed with a
mixed analysis of variance or a multivariate
analysis of variance.
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KEY TERMS

mixed designs (p. 465)
matched-pairs design

(p. 466)
power (p. 467)
dependent groups t test

(p. 471)
within-subjects designs

(repeated-measures
designs) (p. 474)

order (p. 475)
order (trial) effects (p. 476)
practice effects (p. 477)
fatigue effects (p. 477)
carryover (treatment carry-

over) effects (p. 477)

sensitization (p. 477)
randomized within-subjects

design (p. 481)
counterbalanced within-

subjects design (p. 483)
sequence effects (p. 493)

EXERCISES
1. What feature of the matched-pairs design

makes it
a. an internally valid design?
b. a powerful design?

2. A researcher uses a simple between-subjects
experiment involving 10 participants to
examine the effects of memory strategy
(repetition vs. imagery) on memory.
a. Do you think the researcher will find a

significant effect? Why or why not?
b. What design would you recommend?
c. If the researcher had used a matched-

pairs study involving 10 participants,
would the study have more power?
Why? How many degrees of freedom
would the researcher have? What type of
matching task would you suggest? Why?

3. An investigator wants to find out whether
hearing jokes will allow a person to perse-
vere longer on a frustrating task. The
researcher matches participants based on
their reaction to a frustrating task. Of the
30 original participants, 5 quit the study
after going through the “frustration
pretest.” Beyond the ethical problems, what
problems are there in using a matched-pairs
design in this situation?

4. What problems would there be in using a
within-subjects design to study the “humor-
perseverance” study (discussed in question
3)? Would a counterbalanced design solve
these problems? Why or why not?

5. Why are within-subjects designs more
powerful than matched-pairs designs?

6. Two researchers hypothesize that spatial
problems will be solved more quickly when
the problems are presented to participants’
left visual fields than when stimuli are pre-
sented to participants’ right visual fields.
(They reason that messages seen in the left
visual field go directly to the right brain,
which is often assumed to be better at pro-
cessing spatial information.) Conversely,
they believe verbal tasks will be performed
more quickly when stimuli are presented to
participants’ right visual fields than when
the tasks are presented to participants’ left
visual fields. What design would you rec-
ommend? Why?

7. A student hypothesizes that alcohol level
will affect sense of humor. Specifically, the
student has two hypotheses. First, the more
people drink, the more they will laugh at
slapstick humor. Second, the more people
drink, the less they will laugh at other forms
of humor. What design would you recom-
mend the student use? Why?

8. You want to determine whether caffeine, a
snack, or a brief walk has a more beneficial
effect on mood. What design would you
use? Why?

9. Using a driving simulator and a within-
subjects design, you want to compare the
differences between driving unimpaired,
driving while talking on a cell phone, and
driving while legally intoxicated.
a. Which order effects do you have to

worry about? Why?
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b. To what degree would counterbalancing
solve the problems caused by order
effects?

c. How would you try to prevent order
effects from harming the validity of your
study?

10. A researcher wants to know whether music
lessons increase scores on IQ subtests and
whether music lessons have more of an
effect on some subtests (e.g., more of an
effect on math than on vocabulary) than
others.
a. Would you make music lessons a

between- or within-subjects factor?
Why?

b. Would you make subtests a between- or
within-subjects factor? Why?

c. If the researcher did an analysis of vari-
ance (ANOVA) on the data, the
researcher would obtain three effects.
Name those three effects.

d. What effect would the researcher look
for to determine whether music lessons
increase scores on IQ subtests?

e. What effect would the researcher look
for to determine whether music lessons
have more of an effect on math subtests
than on vocabulary subtests?

WEB RESOURCES
Go to the Chapter 13 section of the book’s student
website and

1. Look over the concept map of the key terms.
2. Test your self on the key terms.
3. Take the Chapter 13 Practice Quiz.
4. Download the Chapter 13 tutorial to practice

a. distinguishing between order and sequence
effects

b. interpreting printouts from within-subjects
designs

c. choosing among designs

5. Do an analysis on data from a within-subjects
design using a statistical calculator by going to the
“Statistical Calculator” link.
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