

TreeNetViz: Revealing Patterns of Networks over Tree

Structures

Liang Gou and Xiaolong (Luke) Zhang

Abstract— Network data often contain important attributes from various dimensions such as social affiliations and areas of

expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network

structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper,

we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation

over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of

a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with

novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity.

Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure

constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in

TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by

revealing multiscale and cross-scale network patterns.

Index Terms—Compound Graph, Network and Tree, TreeNetViz, Visualization, Multiscale and Cross-scale.

1 INTRODUCTION

Many application domains make use of a compound graph,
consisting of two subgraphs of a network and a tree in which the
network nodes are the same leaf nodes in the tree. For example, a
Java package contains a set of classes with a hierarchical package
structure and a class dependency network indicating important
relationships among classes. Another example would be a scientific
collaboration network, in which researchers are usually affiliated
with hierarchical social organizations. Because a network node is
mapped to a leaf node in a tree in a compound graph, network links
can also imply connections among tree nodes.

Visualizing relationships among nodes in a compound graph with
two structures of network and tree could be important. Actors in a
social network exhibits a social duality [1], in which each actor can
be treated as an individual interacting with other individuals, and
also as part of a social group connecting with other groups. The
patterns of connections between two individuals, between an
individual and a group, or between two groups can provide new
insight into social relationships at different levels of social
aggregation. For instance, to understand a scientific co-author
network, a scholar’s activities can be analyzed between different
groups, from individual activities to cross-university efforts to
international collaborations. The type of analysis enables us to
understand an individual’s social activities at different levels [2] and
also identify the “boundary spanners” in organizations [3].

However, revealing patterns of a network over a tree structure is a
non-trivial task. Existing visualization tools for compound graphs
fail to fully support exploration of these patterns. Most visualization
tools of compound graphs mainly focus on the representations of
both tree and network structures. Few of them support aggregation of
networks over a tree, interaction and exploration of the patterns of
the aggregated networks at different tree levels with an integrated
view of both network and tree structures. They fail to answer those
questions concerning connections spanning different levels, such as
how child nodes under a specified parent node are related to other
tree nodes; in what ways connections in two non-leaf tree nodes may

differ; and which nodes link two different node groups.
In this paper, we first define a graph model, TreeNet, to represent

a compound graph and support multiscale and cross-scale
aggregation of a network over a tree with the graph model. We then
present a visualization design, TreeNetViz, to support various
exploration and interaction of multiscale and cross-scale network
patterns in the TreeNet graph. TreeNetViz uses a Radial, Space-
Filling (RSF) visualization to represent the tree, a circle layout with
novel optimization we proposed to show the aggregated network,
and an edge bundling technique to reduce visual complexity. The
circular layout algorithm reduces both total edge-crossings and edge
length with considerations of the hierarchical constraints and the
edge weights in a TreeNet graph.

The paper is organized as the following. Section 2 reviews related
literature. Section 3 introduces our TreeNet graph model to represent
a compound graph and how to aggregate a network over a tree in an
on-demand fashion. Section 4 presents the design and
implementation of TreeNetViz based on the graph model, including
a novel algorithm to reduce edge crossings. A case study using
TreeNetViz to analyze a co-author network is described in Section 5.
The paper concludes with future research directions.

2 RELATED WORK

2.1 Compound Graph Visualization

A conventional approach for visualizing a compound graph with a
network and a tree is to overlay two types of links in a single view
with various strategies. The key idea is to convey both hierarchical
information and network connections in a single representation.

Several approaches directly add network connections layered over
Treemaps [4, 5]. Fekete et al. [4] present network connections as
curves linking the network nodes in a treemap representation.
Similarly, ArcTrees [5] combines an arc diagram with a one-
dimension treemap to show network connections. The one-
dimension treemap is utilized to present hierarchy information and
efficiently make use of space compared with a traditional treemap.
These approaches are intuitive and straightforward but they do not
consider issues like visual cluttering.

Some work follows the same approach of integrating two graphs
of tree and network in one view but reduce visual complexity by
approaches such as avoiding edge crossings or node occlusion.
TimeRadarTrees [6] uses a radial node-link tree to represent
hierarchy information with two sets of circle sectors to show network

 Liang Gou and Xiaolong (Luke) Zhang are with the College of Information

Sciences and Technology at the Pennsylvania State University, E-Mail:

{lug129, lzhang}@ist.psu.edu.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online

23 October 2011; mailed on 14 October 2011.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org.

mailto:tvcg@computer.org

connections. The inner circle shows incoming edges and the outer
circles represent outgoing edges, and therefore no actual links are
used for network connections to avoid edge crossings. However, the
design of using spatial information to convey network connections is
not intuitive. Hierarchical Edge Bundling (HEB) [7] bundles
network edges to avoid edge cluttering with B-Spline curves which
use the tree structure as a skeleton. This approach can be applied to
different tree representations such as radial circle, treemap and
balloon layouts. In our design, we applied this approach to a Radial
Space-Filling tree with extra efforts to reduce edge crossings.

Some graph drawing algorithms also deal with a compound graph
to reduce edge crossings [8]. In graph drawing, this approach is
called hierarchical layout, in which nodes are nested in rectangles to
show hierarchy information, and network edges are polylines
connecting the rectangles [8, 9]. These approaches emphasize graph
aesthetics and do not scale very well even for a graph of moderate
size.

Another approach is to use multiple views to draw different graphs
separately and then create links between them. VisLink [10] lays out
graphs on multiple 2D planes, and then places them in 3D space with
links between them. Fung et.al. [11] visualize a set of overlapping
networks in 2.5D representation with each network in an individual
plane, then using inter-plane edges to represent links between
networks. Giacomo et.al. [12] propose an algorithm to lay out two
graphs in two views by one-to-many connections with few link
crossings, which focuses on the aesthetic criteria of graph drawing.
Semantic Substrates [13] places graphs into regions defined by users
based on semantic data and allows users to interactively refine the
semantic for grouping. This approach separates two interconnected
graphs and introduces new links among them. It increases the visual
complexity and requires more cognition cost.

Unlike tradtional node-link diagrams, another option is a matrix
view combined with other designs. Network relations are shown
within adjacency matrix and a hierarchy is added to the
circumference along the matrix [14, 15]. Honeycomb [15] also
provides multilevel aggregation of network over tree structue. The
matrix view eliminates occlusion problems and is good for dense
graphs, but it is less intuitive than node-link diagrams [16] and needs
extra space to show hierarchical information compared with HEB [7]
and our approach.

In summary, the visualization methods of compound graphs
discussed above mainly focus on representation of both tree and
network structures. Few of them, except Honeycomb [15] with a
matrix view, offer the functionality to aggregate a network over a
tree upon users’ request, and to interact and explore various patterns
of aggregated networks at different levels.

2.2 Multiscale Visualization

Multiscale visualization enables people to interact with information
space across different scales of analysis, observation, and activity.
One underlying technique in multiscale visualization of graphs is
hierarchical graph clustering and navigation. The clustering could be
topology-based or content-based [17].

Topology-based hierchical graph clustering involves a bottom-up
method to draw multilevel clustered graphs [18] and uses a spring-
force model to determine locations of node clusters [19]. This
approach offers a well-balanced layout of nodes with and between
clusters. Some research also addresses interaction and exploration of
hierarchical graphs. The DA-TU system [20] supports interactive
visualization and navigation of clustered graphs at different
hierarchical levels. ASK-GraphView [21] detects hierarchical
clusters using a topological feature-based decomposition and allows
users to interactively expand child clusters in each cluster. Auber and
Jourdan [22] propose a tool that allows users to interactively refine
node clusters in a hierarchy. Auber et al. [23] also apply multiscale
visualization in displaying small-world networks. Grouse [24]
supports interactive exploration of clustered graphs within a
hierarchy by expanding or shrinking a node.

Content-based hierarchical graph clustering groups a graph with
attribute data about nodes or edges. Some visualization techniques
emphasize graph layout based on the attibute data. Wu et al. [25]
propose a layout approach to visualize multivariate networks on the
surface of a sphere with a Self-Organizing Map. Pretorius and Wijk
[26] visualize multivariate state transition graphs by hierarchical
clustering based on a user-defined subset of node attributes. The
clustering hierarchy is represented by a tree and the aggregated edges
are shown as an arc diagram. PivotGraph [27] visualizes graphs by
placing nodes on a grid with two specific dimensions from various
attributes and aggregating nodes by adding the vaules of two selected
attributes. This approach can only deal with two attributes at one
time. OntoVis [28] abstracts a social network with an ontology-based
schema, then filters and refines the network by desirable elements in
the ontology schema. In GrouseFlocks [29], nodes in a hierarchy can
be interactively generated and manipulated by user queries. Mizbee
[30] is an application to explore conservation relationships in
comparative genomics data across a range of scales, from genome to
gene.

These approaches and applications are based on the hierarchical
structure generated from the network with either topological or
content-based clustering. However, the hierarchy information is
either hidden in the network structure or not explicitly available to
interact and explore [18-20, 22, 25, 28, 30]. Some of them need extra
efforts from users to link the hierarchy information with the network
structure [24, 29], because two graph structures are not integrated in
a single view. None of them provide aggregation views of a network
over an existing tree structure in an interactive on-demand style.

3 TREENET GRAPH

3.1 TreeNet Data Model

We first give a definition and description of a TreeNet graph model
for later discussion. A TreeNet graph is a compound graph
consisting of two sub-graphs of tree and network along with a node-
mapping schema which defines the relationship between network
nodes and tree leaf nodes. A TreeNet graph, TrN, is written as:

(, ,)TrN T N (1)

where T = (VT, ET) is a subgraph of tree with a node set, VT, and an
edge set ET; N = (VN, EN) is a subgraph of network with a node set,
VN, and an edge set EN; is a mapping function: ()T Nn n ,

T TLn V , N Nn V , and VTL is the set of leaf nodes in the tree T.
A TreeNet graph is a special type of compound graph from

previous literature [31]. It should be noted that the mapping function
is from a tree leaf node to a network node in a TreeNet graph. It
indicates that a tree leaf node can only have one mapped node in the
network, but a node in network may have multiple corresponding
leaf nodes in the tree.

Fig. 1. A TreeNet graph example with (a) a scholar collaboration

network, (b) an affiliation tree and node mapping between them.

Fig. 1 shows an example of a TreeNet graph. The TreeNet graph
includes a subgraph of a scholar collaboration network in Figure 1a
and a subgraph of an afflation tree in Figure 1b. Each node in the
collaboration network has affiliation information shown in the tree
(the mapping relationship is shown with the same number in the
figure). With the above definition, a scholar may have more than one

affiliation.

3.2 Multiscale and Cross-scale Network Aggregation
over Tree Structure

To analyse a TreeNet compound graph, an important step is to
construct different aggregated networks derived from the original
network and the tree structure on users’ demand.

An aggregated network is generated by applying a cut on a tree to
specify which nodes need to be visible, then aggregating the edges
based on the nodes in the cut. An aggregation network in TreeNet is
constructed as following. We first introduce a cutting line, CL, as a
set of nodes in the tree, { : }TCL n n V . Then, an aggregated
network, AG, is written as:

(,)AG V E (2)

where nodes,V CL , and edges, E, are aggregated from the network,
N, with the parent-child relations in the tree T. The aggregated
weight of an edge, e, as

(,) (), ()e u v iji LSet u j LSet v

w A

 (3)

where ,u v V ; Aij is an adjacency matrix of the network N, in which
a cell aij is 1 if there is edge between node i and j; otherwise the
element is 0; and LSet(v) is a function to get the matched network
nodes for leaf nodes of a subtree with root node v:

 () : (), ()

Tv V NLSet v t V m m LeafNodes v . (4)

For a node pair (,)u v in AG, only if the edge weight defined in
Equation (3) is larger than zero, we say that an edge exists between
the node pair; otherwise, there is no edge between node u and v. It
should be noted that the edge aggregation function shown in
Equation (3) is a simple one calculated by the count of underlying
edges and can be replaced by other task specific measurements, e.g.
betweenness, weight and so on.

Fig. 2. Network aggregation in a TreeNet Graph.

Figure 2 shows an example of network aggregation in the TreeNet
graph of the previous example shown in Figure 1. In Figure 2a, the
cutting line (CL) includes two non-leaf nodes, corresponding to the
two nodes C and D, and five leaf nodes under node E and F. CL
leads to a different visual structure of the tree (Figure 2c). As a result,
the child nodes under nodes C and D are aggregated and invisible,
shown as the numbered nodes in Figure 2b. Finally, we get a view of
the aggregated network shown in Figure 2d with this cutting. The
edge between nodes C and D in Figure 2d is aggregated from the
edges (0, 7) and (0, 8) in the original network shown in Figure 2b.

Network aggregation can be multiscale and cross-scale. A scale is
defined by the level (depth) of node in a tree. If nodes in CL are from

the same level, we say the aggregated network is at this single level.
A multiscale network is constructed when we have multiple
aggregated networks generated at different single levels. If the CL
goes through different levels across a tree, the aggregated network is
a cross-scale one connecting nodes from various levels. Figure 2d is
a cross-scale aggregated network.

4 TREENETV IZ: V ISUALIZATION OF TREENET GRAPH

A TreeNet graph consists of two sub-graphs of tree and network. To
help users understand a compound graph of network and tree, the
new visualization design should support:
 readability tasks in general graphs, such as identifying graph

cardinality (the number of nodes and links), neighbours of a node,
following a link and visually searching node and link by labels;

 network exploration and interaction, such as helping users to find
highly connected nodes, peripheral nodes, connectors between two
nodes and closely connected clusters;

 tree exploration and interaction, such as conveying parent-child
relationship, identifying siblings of a node, common ancestors of
nodes and a sub-tree of a node;

 interactive views of multiscale and cross-scale patterns of the
relationships among network nodes over a tree, such as
aggregating or disaggregating a network at the same and different
levels over a tree, showing ego networks and critical paths in the
multiscale and cross-scale view.

With these requirements, we design and implement TreeNetViz to
reveal network patterns over a tree structure. In this section, we
present the visualization and interaction design of TreeNetViz, and
elaborate a novel algorithm of circular layout to reduce the visual
complexity.

4.1 TreeNetViz Visualization

The design of TreeNetViz includes a Radial, Space-Filling (RSF)
technique to represent a tree structure, a circular layout to represent
an aggregated network, an edge bundling technique to reduce visual
complexity and an algorithm to improve circular node placement
with the consideration of various constraints. TreeNetViz is
implemented with Prefuse Java graph visualization package [32].

4.1.1 Tree as RSF Layout

In TreeNetViz, we use RSF technique to show a tree structure which
is also a backbone over which an aggregation network can be placed.
The strength of RSF technique is that it can leverage node areas to
present additional information about nodes while conveying the
parent-child relationship in a tree [33, 34]. Another advantage of a
RSF tree in TreeNetViz is that the circular arrangement of nodes in
tree is an outline over which an aggregated network can be laid.

The idea of RSF visualization is intuitive: the root node is placed
in the centre of a circle; child nodes are assigned within the arc
subtended by their parents with angular width which is part of the
parent node’s width; the angular width angle of a non-leaf node is
proportional to aggregation of a property of all its children. In
TreeNetViz, the angular width indicates the count of all its children
and leaf nodes have a uniform size. The angular width is controllable
to show more or less descendant detail, which will be introduced in
Section 4.3. Figure 3a shows an example of a RSF visualization of
the tree structure in Figure 1b. The node sector color indicates the
node scale in the tree structure and the root node is transparent. The
hierarchy information of the tree is naturally revealed by this
representation. The implementation of RSF is built upon DocuBurst
package [35].

4.1.2 Network as Circular Layout

TreeNetViz uses a circular layout to show node connections in a
network. A good circular layout can reveal patterns in a graph, such
as clusters, ring and star topologies. More important, it naturally uses
the circular arcs of generated by a RSF layout and integrates both
network and tree structures in a single diagram without introducing
duplicated node representations. Our design circularly arranges the

network nodes on the corresponding positions on the circle outlined
in RSF and connects node sectors within the circle. The circular
layout is also improved with an algorithm discussed in Section 4.4.

Figure 3b and 3c show two examples of circular layout of
networks in TreeNetViz design. Figure 3b shows the layout of the
original network in Figure 1a with RSF and Figure 3c shows the
aggregated network of Figure 2d (note that the circular layouts in
Figure 3b and 3c have been optimized with our algorithm introduced
in Section 4.4). The expanded parent nodes are transparent and
labelled with grey color. The edge uses the same color of the node
with the higher scale in the two edge nodes. For example, the edge
between node 4 and UnivD has the same color with UnivD which
has a higher scale than node 4 in Figure 3c. The line thickness
indicates the aggregated weight of an edge. One problem with the
straight line of edge in the circular layout is that some edges may be
occluded by node sectors. For example, the edge between nodes 2
and UnivD is behind the node sector UnivD in Figure 3c. This issue
can be alleviated by the edge bundling technique introduced in the
following section.

4.1.3 Edge Bundling

Edge bundling is an effective way to reduce visual cluttering in
graph-based visualization [7, 36]. With a special routing approach,
edge bundling can also solve the visual occlusion of edge and node
sector mentioned above. The edge bundling approach in TreeNetViz
is adapted from HEB [7]. The edges are bundled hierarchically with
B-Spline curve and the control points are the centres of node sector
area in the RSF tree. Figure 3d shows the results of the edge
bundling of the network in Figure 3c with bundling strength =0.75
(a larger , [0,1] , yields more curved and closely bundled edges).
The control points are circled and highlighted in Figure 3d. We can
observe that there is no occlusion among edge and node sector.

4.2 Interactions

In TreeNetViz, we designed several interaction techniques to help
explore and analyse a TreeNet graph. The interaction tools include
multiscale and cross-scale views with network aggregation, node
sector distortion, an ego-network view and a critical path view. The
interactions provide functionalities to understand multiscale and
cross-scale patterns of a network over a tree in comparison to
previous tools [26-30].
Multiscale view. Users can use a slider provided in TreeNetViz to
control which scale a network should be aggregated and displayed.
This presents aggregated network patterns at different scales of
interest. Figure 4a, 4b and 4c show the network patterns at the scales
of country, university and individual with the TreeNet graph shown
in Figure 1. Note that when the view is drilling down/up along the
scale of affiliation, the hierarchical structure of affiliation is also
explicitly shown.
Cross-scale view. Users can get a cross-scale view of a network over
a tree structure by expanding or collapsing a node. By double

clicking a collapsed non-leaf sector in a RSF tree, users can expand a
sector to exam connection patterns of its direct child nodes at a lower
scale. This is a drill-down action. Similarly, double clicking an
expanded node can collapse its sub-tree and trigger a drill up action.
Users can also have multiple nodes expanded or collapsed. Figure
3d is a cross-scale view of the network at three scales. The
transparent nodes expand to show details and colored nodes are
nodes of interest from the aggregated network.
Node Sector Distortion. Users can dynamically change the angular
width of a sector to show different details. Users can increase or
decrease the width of a node by scrolling the mouse wheel to up or
down when the cursor is hovered over the node. Adjusting a node’s
angular width affects its sub-tree proportionally and also changes the
angular width of its siblings in an oppose manner. This distortion can
provide increased details on nodes of interest. More than one node
can be adjusted with this interaction. For example, the sector of node
CtryA and its children in Figure 5a are enlarged compared with
Figure 4c.

(a) (b)

Fig. 5. (a) An ego-network view and (b) A critical path view.

Ego-network View. By right clicking on a node, an ego-network
view is activated. An ego-network consists of the direct neighbours
of a node of interest and links among them. When the view is
activated, the ego-network of the clicked node is highlighted with X-

 (a) (b) (c)

Fig. 4. Aggregated networks at different scales: (a) the country level;

(b) the university level; (c) the individual level.

 (a) (b) (c) (d)

Fig. 3. TreeNetViz Design: (a) a Radial, Space-Filling (RSF) layout of the tree structure; (b) the optimized circular layout of the basic network

overlaid on RSF tree; (c) a RSF circular layout of the aggregated network in Fig 2d; (d) the view after edge bundling with =0.75.

Ray metaphor (all incident nodes and edges turns into grey and non-
incident edges are hidden). Figure 5a shows the ego-network of node
1. This view offers us a clear view of the local network of node 1.
Critical Path View. While an ego-network view shows a local
structure of a node, a critical path view illustrates how to reach a
target node from a source node. By left clicking a node as the source
and left clicking the other node as the target with “Shift” key down, a
critical path between them is shown in the view. For example, in
Figure 5a, we can see node 1’s neighbourhood, but we don’t know
how to reach node 8 from node 1. Figure 5b shows that node 1 and 8
are connected by node 0.

4.3 Hierarchy-awareness Weighted Circular Layout

In TreeNetViz, one important issue is in what order to place the
nodes of an aggregated network along a circle. A good placement of
nodes can reduce visual complexity and present patterns of relations
in a network saliently. Although the problem of circular layout is
studied in previous work [37, 38], the layout presents some new
requirements in TreeNetViz:
 It should consider the restriction of tree structure. Traditional

circular layout methods [37, 38] place the network nodes along a
circle at a single level. In TreeNetViz, nodes of an aggregated
network, which is generated by expanding or collapsing tree nodes,
may be from different levels of a tree. So the circular layout
should be restricted by the tree structure.

 It should consider the weight of edge. The edge of an aggregated
network in TreeNetViz has a weight, which depends on its
aggregated value and level on the tree. The edge weight is
encoded with line width. Therefore edges with high weight should
be addressed properly to avoid visual cluttering in the circular
layout. In addition, we may need to avoid edge crossings with the
edges from preferable levels, such as lower or higher levels in the
tree.

Besides, previous approaches only minimize either the total number
of edge crossings [37] or total edge length [38]. However, in some
cases, two layouts with same number of edge crossings may have
different total edge length (Figure 6 shows such an example). Both
the total number of edge crossings and total edge length should be
considered in a circular layout.

Fig. 6. Two layouts with the same number of edge crossings but

different total edge length.

With the observations shown above, we propose an algorithm,
Hierarchy-awareness Weighted Circular Layout (HWCL), to place
nodes of an aggregated network with the constraints of tree hierarchy
and edge weight, and the considerations of both of edge crossings
and length.

The basic idea of HWCL is to place network nodes along a circle
or an arc to avoid visual cluttering of links among nodes. It first sets
criteria of less visual cluttering and then uses a heuristic approach
(try different combinations of node order) to achieve a local optimal
solution based on the criteria. In HWCL, the criteria of visual
cluttering are the combination of the number of edge crossings and
edge length.

HWCL first considers tree hierarchy when placing nodes. The
child nodes only can be placed and re-ordered under the arc of their
parent node. The order of parent nodes must be decided before their
children are placed. Only the nodes at the first level (under the root
node in the tree) can be placed without the constraint of their parent
node. At each step, we place the child nodes only under one parent
node. The child nodes under a parent node with larger child count
have a higher priority to reorder. With this rule, when users expand
or collapse a node, this node will not be re-ordered, its position
remains same, and only the child nodes are shifted to reduce the

visual cluttering. This can keep the tree structure and make the
layout consistent to reduce users cognition cost.

Further, HWCL also utilizes the weight of edge. The idea is that
edges with high weight have more visual complexity than those with
low weight, because the highly weighted edges have large costs of
edge crossings and length. The edge weight is controllable by its
aggregated value and level in the tree. The goal is to reduce the total
number of crossings and length of highly weighted edges.

4.3.1 Algorithm Background

Suppose we have an aggregated network given in Equation (2), and
it is an undirected graph with n V nodes and m E edges. Define
a neighbourhood of a node v as () { :{ , } }N v u V v u E . We
use similar notations in [37]: A configuration of node placement, G,
is a position mapping function () { : 0, , 1}v i n , in which
indicates node positions (either clockwise or counter-clockwise)
along a circle. Then, we can define that the order of u is large v in
the placement as (i.e. u is encountered before v in the placement)

 () ()u v v u (5)

In the placement , two nodes, u and v, are consecutive, denoted as
u v , if () () 1v u .

4.3.2 Cost Functions

The idea of the algorithm is to place the nodes to minimize the total
cost in a placement of nodes. Our assumption is that a good node
placement has fewer total edge crossings and short total edge length.
Thus, in our approach, the cost function consists of two parts: the
total weighted edge crossings and weighted edge length.

We define a weighted crossing as:

1 2

1 2

() ()
(,)

0

w e w e
e e

 if 1 2 1 2u u v v ,
 (6)

otherwise.

where 1 1 1{ , }e u v and 2 2 2{ , }e u v , and ()w is an edge weight

function. The total cost of weighted edge crossings in a

placement is:

1 2

1 2,
() (,)

e e E
e e

 (7)

The weighted length of an edge e E is defined as

() (,)
()

() (,)

w e hop v u
e

w e hop u v

 if (,) (,)hop v u hop u v ,
 (8)

 if (,) (,)hop v u hop u v .

where (,) (() ())hop v u v u mod n.. We use the shorter hops
between the two nodes of an edge along the circle as the length
metric and weight this length by the edge’s weight. Therefore, the
total cost of weighted edge length in a placement is:

 () ()
e E

e

 (9)

The final cost function consisting of the two components is
written as:

() (1) () () (10)

where [0,1] is a control parameter to balance the weight of edge
crossing and length.

We also need control the weight of edges from different levels. In
Equation (3) and (5), the weight function is defined as:

 () (1 log) (1 ())e ew e w sqrt level (11)

where elevel is the level of the edge e, we is the aggregated edge
weight, defined in Equation (3), and , [0,1] are parameters
controlling the impact of the aggregated edge weight and edge level
from the tree structure over the final weight. For example, if the link
patterns at lower levels are of interest, we want fewer edge crossings
and length with lower level edges, and we can set a large value.

To sum up, the algorithm goal is to find an “optimal” placement,

0 , of the graph, G, to minimize the total cost, namely:

0() min () . In this algorithm, we use two-stage optimization
to solve this problem.

4.3.3 Two-stage Optimization

To solve the NP-hard problem of circular layout [39], we use a two-
stage heuristic optimization derived from paper [37] to minimize the
total cost in a placement. The first stage is to initialize the positions
of node with certain rules. Then, we follow a greedy strategy to
search a locally optimal placement for nodes.
Stage 1: Node Position Initialization
In the first stage, we begin with a single node and append other
nodes to the front or end of the placed nodes. Only one node is
selected and appended at a time. In the initialization, we need to
decide node selection and appending strategies.

Node Selection Strategy. At each step, we choose the node with
the largest number of placed neighbours. If two nodes have the same
number of placed neighbours, we favour the node with the least
number of unplaced neighbours. The rationale of this strategy is to
introduce fewer open edges (an open edge connects a placed node
with an unplaced one), and therefore avoid causing more edge
crossings or increasing the total edge length when a new node is
placed in the later.

Node Appending Strategy. We append node to the end that
results in fewer edge crossings with the open edges. At this stage, we
append each node to either the front or the end of the placed node,
and do not try every possible position. This is to reduce the
computation complexity and further optimization is conducted in the
second stage. Note that the crossings with close edges are not
considered because they are same for both ends.
Stage 2: Node Sifting Optimization
After nodes are initially placed in a circle, we use sifting to move a
node along the circle to find a locally optimal position. The sifting
approach was original proposed for binary decision diagrams [40]
and used in edge-crossing minimize in circle layout [37].

The idea of node sifting is to iteratively swap a node with its
neighbour in one direction, and find the position with the smallest
cost shown in Equation 10. Then, we can place the node to the
position with the smallest cost. After all nodes have been
repositioned, we say a round of node sifting is completed.

To find the smallest cost for each node, we do not have to
calculate the total cost in Equation 10, and only need to calculate the
change of cost in each swapping. Because only the positions of the
two swapped nodes are changed in each step, the change of the edge
crossings and length are only related the two nodes. Thus, we focus
on the cost change of the two swapped nodes.

Let the placements before and after swapping as and
' respectively. The crossing number of two consecutive nodes, u

and v, is:

() ()

() ({ , },{ , })uv x N u y N v
c u x v y

 (12)

The change of crossing cost, c , is:

 (') ()vu uvc c c (13)

The total length of a node, u, is:

()

() ({ , })u x N u
u x

 (14)

The change of length is

(') () (') ()u u v v . (15)

The cost change, , in each swapping can get by:

(1) c . (16)

Thus, in each iteration of node swapping, we can record the cost
change, , and then find the position with minimal cost. After each
iteration, the node is placed to the locally optimal position obtained
above.

In practice, node sifting converges quickly and the computation
complexity is acceptable. Usually, a local optimal placement can be
achieved by a few rounds of node sifting and each round can be done
with ()o nm [37]. The experiments in next section also confirm this.

4.4 Circular Layout Experiments

We conducted several experiments to show the performance of
HWCL with variant strategies. The dataset is from a real research
field (the background and details of data are introduced in the case
study of Section 5.1). The network has 847 nodes and 2,498 edges,
and a tree structure with three levels (a root node, 10 nodes at the
first level, 90 nodes at the second and 847 at the bottom).

In the following experiments, we started from the aggregated
network at the first level (n=10, m=17). Then we expanded the node
one by one to the second level. Every time we expanded a new node,
TreeNet generated a new aggregated network. We repeated this
process at the third level. In this way, we can have hundreds of
networks with different numbers of nodes and edges to conduct
experiments. Note that the number of nodes in the series of networks
is not continuous, because the node number under the expanded node
at each step is different.

Fig. 7. The final cost of initialization and sifting optimization of different

rounds compared to random layout.

 (a) (b)

Fig. 8. The costs of edge crossings and total length with =0, 0.5 and

1: (a). Relative cost of crossings (b) Relative cost of length.

Fig. 9. The final cost with different combinations of edge weight and

level parameters.

4.4.1 Algorithm Convergence

The first experiment was to show that the sifting heuristic converges
in a few rounds. Figure 7 compares the final cost in Equation (10)
after initialization and four rounds of sifting optimization. The final
cost is set with 0.5 , the average of the number of edge crossings
and the total edge length, and weight parameters are controlled

with , 0 . The horizontal axis is the number of nodes (not
continuous). The vertical axis is the ratio of the final cost after
initialization and sifting optimization to the cost of random layout.
As we expected, the final cost is reduced in a few rounds and no
obvious improvement after round 4. Thus, the round number is set as
4 in TreeNetViz.

4.4.2 Impact of the Crossing and Length Cost

We also compared the layout results of different combinations of
edge crossings and total length used in the final cost with Equation
(10). Figure 8a and 8b compare the edge crossing cost and total
length cost in the layout optimization with different values of =0,
0.5 and 1. The weight parameters are set with , 0 . The vertical
axis is the ratio of the cost of our algorithm with different to the
cost of random layout. We can see that the crossing cost of =0
(algorithm using only edge crossings) and =0.5 (algorithm using
both edge crossings and length) are almost the same in Figure 8a, but
in terms of the length cost, =0.5 is slightly better than =0 as
shown in Figure 8b. In addition, Figure 8a shows that only using the
length cost (=1) can reduce the crossing number (with relative
value less than 1), but its effectiveness to reduce crossing is not as
good as using edge crossings by comparing =1 and 0.5 with =0.
However, the performance to reduce total length of the algorithm
with =1 decreases quickly as the number of nodes increases as
shown in Figure 8b. We conclude that our algorithm incorporating
both edge crossings and edge length can reduce two types of costs
than the approach considering only either edge crossings or edge
length, but the choice of is tricky and needs large scale of
experiment, which is beyond the scope of this paper.

4.4.3 Impact of Edge Weight and Level

The last experiment investigated the impact of edge weight and level
over layout results. We compared four combinations of level and
weight parameters by using unweighted final cost (no weight used in
Equation (10), namely () 1w e) with 0.5 . In Figure 9, the two
digital numbers in the legend indicate the combination of weight and
level parameters. For example, “00” means 0, 0 and “05”
for 0, 0.5 . All combinations generated good cost results
compared to the random layout. The two lines with 0.5 have
lower cost than the two with 0 , which indicates that edge weight
can reduce visual cluster. The effect is more obvious as the node
number increases. On the contrary, we see that the two lines with
different but same almost overlap, which shows that impact of
level is not obvious.

In summary, the HWCL converges very quickly and the round
number of four is used in TreeNetViz. Both the number of edge
crossings and total edge length improve the layout results, but there
is no general rule how to balance two parts. In our design, we treat
them equally with =0.5. Finally, the edge weight has larger impact
to reduce the final cost compared with edge level and 0.5 and

0.5 are used TreeNetViz. Figure 10 compares the results of an
aggregated network without and with HWCL optimization. It shows
that HWCL largely reduces visual cluttering.

5 CASE STUDY: A CO-AUTHOR SOCIAL NETWORK OF

MEDLINE

In this section, we present a case study using TreeNetViz to analyze
a co-author network and help understand collaboration patterns
among diabetes researchers at University M. Diabetes research was
selected because the topic is studied in many disciplines, ranging

(a) (b) Fig. 11. The largest component in the

collaboration network of diabetes researchers. Fig. 10. Comparison of random layout and HWCL with the same aggregated network:

(a) Random Layout; (b) HWCL.

(a) (b) (c)

Fig. 12. The collaboration network at the college level: (a) the aggregated network; (b) the ego network of “Medical School”; (c) a critical path

between “Medical School” and “School of Kinesiology”.

from social sciences to public health to life science and biomedical
research. This case study aims at understanding the patterns of peer-
to-peer collaboration across organizational boundaries and
discovering potential collaborators. While conventional methods
provide answers to questions such as who are those most connected
authors and how well they are connected (like Figure 11), these
methods cannot address questions concerning complex social
activities, such as:
 How do collaboration patterns vary across departments and

colleges?
 What do cross-department collaboration networks look like? and
 Who are those researchers acting as “boundary liaison” to connect

different departments and colleges?

5.1 The Data

Data were collected through two steps. In the first step, primary
diabetes terms from MeSH (Medical Subject Headings) [41] were
used to search MedLINE research articles published from 2006 to
2010, and a collaboration network was constructed based on the co-
author relationship of the retrieved articles. The second step searched
the name directory for researchers identified as affiliated with
University M and builds a tree structure based on the organizational
structure. The names of authors are anonymized. Two collections
were combined and cleaned to obtain the final dataset.

Fig. 13. The view of collaboration among departments.

Fig. 14. The view of collaboration among individual researchers.

The dataset includes 614 articles, 847 authors and 2,498 co-author
relationships. The largest component of the network is shown in
Figure 11. The author affiliation is selected to create a tree with two
levels: college and department. TreeNet model identified 10 college-
level nodes and 90 department-level nodes. A node at the college
level can also be a school or a research centre. Thus, when we use

the term “college” henceforth, we also mean school and research
centre.

5.2 Multiscale Exploration

With TreeNetVis, users can examine collaboration patterns at three
different levels: collaborations involving authors from different
colleges, different departments, and also individuals.

The network patterns at different scales can reflect the power and
status of collaboration resources, and the access control to social
groups and individual authors. For example, in Figure 12a, which
shows the collaboration network at the scale of colleges, the size of
node sector represents the number of researchers in a group, and
thickness of an edge shows the collaboration strength between two
groups. From this figure, we can gain some insights into the status of
a college in the university collaboration network, such as “Medical
School”, which not only has the most researchers but also the most
active intra-college collaboration activities; “LSA” (Literature,
Science and the Arts) and “Public Health” are ranked the second and
third, in terms of the number of researchers.

Some structural features on inter-college collaboration are
presented in Figure 12b with an ego-network view. For example,
Figure 12b is the ego network of “Medical School” whose
neighbours are highlighted with X-Ray mode. It shows some cliques
at this scale, such as the one consisting of “Medical School”, “LSA”,
“Life Science Institute”, and “Public Health”. Collaboration between
Medical School and Public Health is the strongest. Also, the view
helps identify a peripheral player “School of Kinesiology” with blue
color. This college is connected to “Medical School” only via
“School of Public Health” as shown in Figure 12c.

Changing the level of observation and analysis can provide more
details about collaboration at other levels. For example, moving the
scale of department, we can see how researchers collaborated across
departments (Figure 13). Obviously, the collaboration patterns
dominate among several large departments. At the scale of
individuals, we can see those active researchers with dense
connections, and general collaboration trends are shown in Figure 14.

Fig. 15. A cross-scale view of departments under college LSA with

with other colleges.

5.3 Cross-Scale Exploration

TreeNetVis allows users to understand co-author patterns across
different social levels and identify connectors spanning over
different social entities.

Cross-scale views first present patterns how actors collaborate
with each other from different scales. Figure 15 shows how the
departments in “LSA” cooperated with other colleges. We find that
most departments inside this college rarely collaborate with each
other, but connect with other outside departments. This view
indicates that it might be necessary to further explore why

departments do not collaborate and how to motivate local
collaborations. Figure 16 shows the collaboration pattern of
researchers in “Biochemistry Dept” with all others. These
researchers also have more outside connections than internal ones.

Fig. 16. A cross-scale view with connections over all three levels.

Fig. 17. A liaison at the department level connecting two schools.

Fig. 18. The researcher “Auth525” on a critical path.

Cross-scale views also help users find out which social actor at one
level acts as a “liaison” to link with other actors at another level.
Let’s go back to the example shown in Figure 12c. We know that
“School of Kinesiology” and “Medical School” are connected by

“School of Public Health (SPH)”. At this point, we may want to
know which department in “SPH” connects them. The cross-scale
view in Figure 17 shows that “Hlth Behaviour & Hlth ED Dept
(HBHED)” at the department level serves as the liaison connecting
two schools. Drilling down “HBHED” to individual level (Figure 18),
we can find the researcher connecting two different schools is
“Auth525”.

As shown in this case study, TreeNetVis allows the analysis of
complex research collaboration with more depths. With this tool
alone, users can examine the relationships among social entities at
the levels of college, department and individual, and explore cross-
scale connections. TreeNetVis reveals some interesting phenomena
that cannot be easily identified with conventional social network
analysis tools, such as inactive collaboration among researchers
within the same department and key researchers who connect various
centres and departments. Such findings lay a foundation for further
research to understand questions like:
 what makes an actor become a connector between different

organizations;
 what are the barriers to intra- and inter-organizational

collaborations respectively; and
 what roles connectors play in collaborative projects (“mailman” or

fostering significant sharing and intellectual contribution).

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach to model and visualize a
compound graph including two subgraphs of tree and network. The
TreeNet models the compound graph and supports multiscale and
cross-scale network aggregation over the tree structure in the graph.
TreeNetViz supports the exploration and interaction of a TreeNet
graph by using a Radial, Space-Filling (RSF) visualization to
represent the tree structure, a circle layout to show the aggregated
network, an edge bundling technique and a novel circular layout
algorithm to reduce visual complexity. Our case study of using
TreeNetViz to analyze a co-author network indicates the potential of
our approach in support of understanding the social network patterns
over the affiliation hierarchy.

The research has some limits. First, TreeNetViz still faces the
scalability issue as do most graph visualizations. For example, a
node sector becomes hard to manipulate when a large number of
nodes are arranged along the circle. There is still visual cluttering of
edges when lots of edges are incident in a view, although some
optimizations of reducing edge crossings and length have been done.
Second, current design does not support modifications of the tree
structure. In some cases, users may need to merge, add and delete
nodes in the tree structure. The modification results in different
aggregated networks and connection patterns.

We will extend our work in two directions. First, we will extend
the TreeNet graph model and aggregation metrics. A general graph
model is desirable to support more diverse compound graphs which
do not only consist of two tree and network subgraphs, but also
hybrid of them. We will also explore some quantitative metrics to
support more complicated analysis tasks in TreeNet graph. For
network aggregations, we can provide different approaches for nodes
and edges, such as betweenness, eccentricity, authority and hub, and
clustering coefficient [42]. Some measures of node similarity are
also under development to predict link in the network. Second, we
also want to explore other interaction techniques to alleviate the
visual complexity. For example, we can provide some other
Focus+Context interactions, such as showing the details outside the
circle suggested by [33]. For the edge routing, some other strategies
to layout edges can also be studied, such as drawing internal edges in
a group outside of the circle to avoid crossings.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Airong Luo and Ms. Patricia F.
Anderson for their suggestions and help on preparation for the data,
the anonymous reviewers for their valuable comments.

REFERENCES

[1] Breiger, R. (1974). The Duality of Persons and Groups. Social Forces,

53, pp. 181-190.

[2] Kilduff, M., & Tsai, W. (2003). Social Networks and Organizations.

London: Sage Publications Inc.

[3] Aldrich, H., & Herker, D. (1977). Boundary Spanning Roles and

Organization Structure. The Academy of Management Review, 2(2), pp.

217-230.

[4] Fekete, J.-D., Wang, D., Dang, N., Aris, A. & Plaisant, C. (2003).

Overlaying Graph Links on Treemaps. In Proceedings of the 2003 IEEE

Symposium on Information Visualization (InfoVis’03), Poster

Compendium, pp. 82–83.

[5] Neumann, P., Schlechtweg, S. & M. S. T.(2005). ArcTrees: Visualizing

Relations in Hierarchical Data. In Proceedings of the 2005

Eurographics / IEEE VGTC Symposium on Visualization (EuroVis’05),

pp. 53–60.

[6] Burch, M. & Diehl, S. (2008), TimeRadarTrees: Visualizing Dynamic

Compound Digraphs. Computer Graphics Forum, 27, pp. 823–830.

[7] Danny, H. (2006). Hierarchical Edge Bundles: Visualization of

Adjacency Relations in Hierarchical Data. IEEE Transactions on

Visualization and Computer Graphics, 12, pp. 741-748.

[8] Sugiyama, K. & Misue, K.(1991). Visualization of Structural

Information: Automatic Drawing of Compound Digraphs. IEEE

Transactions on Systems, Man, and Cybernetics, 21(4), pp. 876–892.

[9] Bertault, F. & Miller, M. (1999). An Algorithm for Drawing Compound

Graphs. In Proceedings of the 7th International Symposium on Graph

Drawing (GD’99), pp. 197–204.

[10] Christopher, C. (2007). VisLink: Revealing Relationships amongst

Visualizations. IEEE Transactions on Visualization and Computer

Graphics, 13, pp. 1192-1199.

[11] Fung, D. C. Y., Hong, S.-H., Koschutzki, D., Schreiber, F. & Xu, K.

(2009). Visual Analysis of Overlapping Biological Networks. In

Proceedings of the 2009 13th International Conference Information

Visualisation, IEEE Computer Society, 16(18), pp. 337–342.

[12] Giacomo, E., W. Didimo, Liotta, G. & Palladino, P. (2009). Visual

Analysis of One-to-Many Matched Graphs. In Graph Drawing, Ioannis

G. Tollis and Maurizio Patrignani (Eds.). Lecture Notes in Computer

Science, 5417, pp. 133-144.

[13] Shneiderman, B. & Aris, A. (2006). Network Visualization by Semantic

Substrates. IEEE Trans. on Visualization and Computer Graphics,

12(5), pp. 733-740.

[14] van Ham, F.(2003). Using Multilevel Call Matrices in Large Software

Projects. In Proceedings of the 2003 IEEE Symposium on Information

Visualization (InfoVis’03), pp. 227–232.

[15] van Ham, F., H.-J. Schulz & Dimicco, M. J. (2009). Honeycomb:

Visual Analysis of Large Scale Social Networks. In Proceedings of the

12th IFIP TC 13 International Conference on Human-Computer

Interaction: Part II (INTERACT '09), 5727, pp. 429-442.

[16] Ghoniem, M., Fekete, J.-D., & Castagliola, P. (2004). A Comparison of

the Readability of Graphs Using Node-Link and Matrix-Based

Representations. In Proceedings of the 2004 IEEE Symposium on

Information Visualization (InfoVis' 04), pp. 17-24.

[17] Elmqvist, N., & Fekete, J. (2010). Hierarchical Aggregation for

Information Visualization: Overview, Techniques and Design

Guidelines. IEEE Trans. on Visualization and Computer Graphics,

14(6), pp. 439-454.

[18] Eades, P., & Feng, Q.-W. (1997). Multilevel Visualization of Clustered

Graphs. In Proc. of Symposium on Graph Drawing.

[19] Huang, M. L., & Eades, P. (1998). A Fully Animated Interactive

System for Clustering and Navigating Huge Graphs. In Proc. of

Symposium on Graph Drawing, pp. 374-383.

[20] Eades, P. (2000). Navigating Clustered Graphs using Force-Directed

Methods. Journal of Graph Algorithms and Applications, 4(3), 157.

[21] Abello, J., van Ham, F., & Krishnan, N. (2006). ASK-GraphView: A

Large Scale Graph Visualization System. IEEE Trans. on Visualization

and Computer Graphics, 12(5), pp. 669-676.

[22] Auber, D., & Jourdan, F. (2005). Interactive Refinement of Multi-scale

Network Clusterings. In Proc. of InfoVis’05, pp. 703-709.

[23] Auber, D., Chiricota, Y., Jourdan, F., & Melancon, G. (2003).

Multiscale Visualization of Small World Networks. In Proc. of

InfoVis’03, pp. 75-81.

[24] Archambault, D., Munzner, T., & Auber, D. (2007). Grouse: Feature-

Based, Steerable Graph Hierarchy Exploration. In Proc. of EuroVis’07,

pp. 67-74.

[25] Wu, Y., & Takatsuka, M. (2008). Visualizing Multivariate Networks: A

Hybrid Approach. In Proc. of PacificVIS'08.

[26] Pretorius, A. J., & Wijk, J. J. V. (2006). Visual Analysis of Multivariate

State Transition Graphs. In IEEE Trans. on Visualization and Computer

Graphics, 12(5), pp. 685-692.

[27] Martin, W. (2006). Visual Exploration of Multivariate Graphs. Proc. of

CHI’06, pp. 811-819.

[28] Shen, Z., Ma, K. L., & Eliassi-Rad, T. (2006). Visual Analysis of Large

Heterogeneous Social Networks by Semantic and Structural Abstraction.

IEEE Trans. on Visualization and Computer Graphics, 12(6), pp. 1427-

1439.

[29] Archambault, D., Munzner, T., & Auber, D. (2008). GrouseFlocks:

Steerable Exploration of Graph Hierarchy Space. IEEE Trans. on

Visualization and Computer Graphics, 14(4), pp. 900-913.

[30] Meyer, M., Munzner, T. & Pfister, H. (2009). MizBee: A Multiscale

Synteny Browser. IEEE Transactions on Visualization and Computer

Graphics, pp. 897-904.

[31] Sugiyama, K. & Misue, K. (1991). Visualization of Structural

Information: Automatic Drawing of Compound Digraphs. IEEE Trans.

SMC, 4(21), pp. 876-893.

[32] Heer, J., Card, S. K., & Landay, J. A. (2005). Prefuse: A Toolkit for

Interactive Information Visualization. Proc. of CHI’05.

[33] Stasko, J. & Zhang, E. (2000). Focus+Context Display and Navigation

Techniques for Enhancing Radial, Space-Filling Hierarchy

Visualizations. In Proceedings of the IEEE Symposium on Information

Visualization 2000 (InfoVis '00), pp. 57-65.

[34] Yang, J., Ward, M. O. & Rundensteiner. E. A. (2002). InterRing: An

Interactive Tool for Visually Navigating and Manipulating Hierarchical

Structures. In Proceedings of the IEEE Symposium on Information

Visualization (InfoVis'02), pp. 77-85.

[35] Collins, C., Carpendale, S., & Penn, G (2009). DocuBurst: Visualizing

Document Content using Language Structure. In Proceedings of

Eurographics/IEEE-VGTC Symposium on Visualization (EuroVis '09),

28(3), pp. 1039-1046.

[36] Cui, W., Zhou, H., Qu, H., Wong, P. C. & Li, X. (2008). Geometry-

Based Edge Clustering for Graph Visualization. In Proc. of InfoVis’08,

pp.1277-1284.

[37] Baur, M. & U. Brandes (2005). Crossing Reduction in Circular Layouts.

Graph-Theoretic Concepts in Computer Science, 3353, pp. 332-343.

[38] Gansner, E. & Y. Koren (2007). Improved Circular Layouts, In

Proceedings of the 14th international conference on Graph drawing

(GD'06), pp. 386-398.

[39] Masuda, S., Kashiwabara, T., Nakajima, K. & Fujisawa, T. (1987). On

the NP Completeness of a Computer Network Layout Problem. In Proc.

IEEE Intl. Symp. Circuits and Systems, pp. 292–295.

[40] Rudell, R. (1993). Dynamic Variable Ordering for Ordered Binary

Decision Diagrams. In Proc. IEEE Intl. Conf. Computer Aided Design

(ICCAD ’93), pp. 42–47.

[41] Medical Subject Headings. http://www.nlm.nih.gov/mesh

[42] Everett, M., & Borgatti, S. (1999). The Centrality of Groups and

Classes. Journal of Mathematical Sociology, 23, pp. 181-202.

http://www.nlm.nih.gov/mesh

