
Intelligent Understanding of Handwritten Geometry
Theorem Proving

Yingying Jiang1 Feng Tian1 Hongan Wang1,2
1 Intelligence Engineering Lab,

Institute of Software,
Chinese Academy of Sciences

Beijing, China
{jyy,tf,wha}@iel.iscas.ac.cn

Xiaolong Zhang3 Xugang Wang1 Guozhong Dai1,2
2 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of

Sciences
{wxg,dgz}@iel.iscas.ac.cn

3 The Pennsylvania State University
lzhang@ist.psu.edu

ABSTRACT
Computer-based geometry systems have been widely used
for teaching and learning, but largely based on mouse-and-
keyboard interaction, these systems usually require users to
draw figures by following strict task structures defined by
menus, buttons, and mouse and keyboard actions. Pen-based
designs offer a more natural way to develop geometry
theorem proofs with hand-drawn figures and scripts. This
paper describes a pen-based geometry theorem proving
system that can effectively recognize hand-drawn figures and
hand-written proof scripts, and accurately establish the
correspondence between geometric components and proof
steps. Our system provides dynamic and intelligent visual
assistance to help users understand the process of proving
and allows users to manipulate geometric components and
proof scripts based on structures rather than strokes. The
results from evaluation study show that our system is well
perceived and users have high satisfaction with the accuracy
of sketch recognition, the effectiveness of visual hints, and
the efficiency of structure-based manipulation.

Author Keywords
Geometry theorem proving, hand-drawn figures, hand-
written proof scripts, recognition, structure based
manipulation.

ACM Classification
H5.2. Information Interfaces and Presentation: User
Interfaces. - Interaction styles; I.5.4. Pattern Recognition:
Applications. - Signal processing.

General Terms Design, Algorithms, Human Factors

INTRODUCTION
Geometry theorem proving is one of the most challenging
skills for students to learn in secondary school mathematics

[5, 18]. Senk found that the results of geometry education in
secondary school were disappointing, even in the second
semester of learning geometry [26]. About a quarter of
students gave up on problems of geometry proving, and
only about 30% of students can complete 75% or more of
geometry proofs correctly. Many students find it difficult to
write down a formal proof because they do not understand
the geometric properties involved in the proof [29].

Computer-assisted geometry proving has been studied by
many researchers [2, 7, 9, 12, 19, 23]. Dynamic geometry
systems are developed to assist users to create geometric
constructions, explore geometry graphs, formulate
conjectures, check facts [9, 12, 19, 23], and even build
proofs [2, 7]. These tools are useful in helping users
understand geometric properties, generate theorem proving
ideas, and discover interesting geometry propositions.
However, built upon the traditional WIMP interaction style,
they impose pre-defined interaction styles and task
structures that are defined by menus, buttons, mouse and
keyboard actions, and so on. These interaction styles and
task structures often do not match what students usually do
in geometry proving in their real-life. Being forced to
follow unfamiliar interaction styles and task structures,
students may be distracted from the major task of exploring
and understanding the relationships between proof steps
and geometry figures, which is an important factor to
improve the understanding of geometry proving [30].

Pen-based interaction offers an opportunity to enhance the
learning of geometry proofs by leveraging advanced
computational techniques and at the same time, by allowing
students to follow the natural and traditional hand-written
approach. With pen-based tools, students can write proof
scripts and geometric figures on computer screens, just as
what they do with pen and paper in real life. Computational
tools can understand their hand-writing and offer intelligent
help based on their actions and action contexts.

In this paper, we explore an approach to support pen-based
geometry proving. A sketch recognition method is proposed
to understand the hand-drawn geometry graphs and
handwritten geometry proof scripts and build the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’10, February 7–10, 2010, Hong Kong, China.
Copyright 2010 ACM 978-1-60558-515-4/10/02...$10.00.

119

correspondence between geometric components and proof
scripts. Based on the algorithm, we develop a system to
provide dynamic and intelligent visual assistance to help
users understand the process of proving and support
structure-based manipulation of proof scripts. Figure 1
demonstrates some key features of our approach. Lines in
Figure 1 are the recognition results of hand-written lines;
when a geometry proof step, AB⊥AC, is selected, the
corresponding geometry representation, the perpendicular
lines AB and AC, are highlighted.

Figure 1. An example of intelligent visual hints that

highlights the geometry representation of a selected proof
step.

The paper is structured as the following. First, we review
related research, and then outline the key factors in
geometry proofs by analyzing a proving example. Next, we
describe the detail of the recognition algorithm and
intelligent tools to assist geometry proving. Furthermore,
we present the evaluation of a prototype system of
geometry proving. Finally, we discuss the results of our
research and conclude the paper with future research
directions.

RELATED WORK

Geometry Systems
Computer assisted teaching and learning systems are
important to education. In geometry education, interactive
geometry software environments [4, 9, 11, 12, 23] have
offered new methods for teaching and learning geometry
theorem proving [13]. For example, MMP/Geometer [9]
and GeoProof [23] support automatic geometry theorem
proving; GeoProof [23] used an automatic theorem prover
to check facts. Although these systems are useful, they are
based on the mouse-and-keyboard interaction, which is
unnatural and imposes task structures that do not match
what students do in real-life.

Researchers have studied pen-based geometry systems to
support more natural interactive activities. Liu et al [22]
developed a pen-based geometry teaching system, which
supported only geometry drawing but neglected geometry
proving. GeoAssistor [10] is a pen-based geometry proving
system, but the system cannot understand hand-written
proof scripts.

Sketch Recognition
Sketch understanding systems have been used in education
area. These systems made learning activities more
interesting. MathPad2 [20] is a system to support the
creation and exploration of mathematical sketches. Ouyang
[24] studied the recognition of hand-drawn chemical
diagrams and the generation of the 3D structure of the
organic substance based on recognition results to support
the interaction with and understanding of the substance.
Alvarado [1] built a system to simulate physical
phenomenon based on pen-based sketches. Sim-U-Sketch
and VibroSketch [16] can assist the learning of the circuit
and vibration knowledge by recognizing hand-drawn circuit
and vibration diagrams. Research has also been done to
recognize handwritten formulae, such as mathematical
expression [20] and chemical expression [24,28]. However,
these systems are domain-specific, and cannot be easily
extended to other domains, such as plane geometry.

A geometry proof consists of hand-drawn geometry figures
and handwritten proof scripts. Recognizing hand-drawn
graphs has been researched. Paulson [25] studied the
recognition of primitive sketches. Li [21] investigated
synchronized recognition of graphs with real-time user
feedback. However, little research has been done to
recognize handwritten geometry proof scripts and build the
correspondence between geometry figures and proof scripts.

GEOMETRY THEOREM PROOF IN PLANE GEOMETRY
To prove geometry theorem in plane geometry, a student
usually draws the corresponding geometry graph, and
writes the proof scripts step by step to prove the theorem.
Sometimes, assistant lines are constructed to help the proof.

We collected ten geometry exercise books from junior-high
students who were studying plane geometry, and analyzed
these manuscripts to get students’ typical handwritten
proving styles on the paper. Figure 2 demonstrates a snippet
from a geometry student’s exercise book, which is the
typical proving style in these exercise books.

Figure 2. A snippet from a student’s geometry exercise

book.

120

As shown in the figure, the proving scripts are on the right
of the hand-drawn graph and are within the blue dashed box.
The proof scripts consist of a serial of preconditions and
conclusions that are combined by the deduction symbols.
We define each precondition or conclusion as a proof step.
Deduction symbols, such as “}=>” and “=>”, are between
proof steps. The reason for a deduction is often behind the
conclusion item and enclosed by a pair of brackets.

For the structure of a proof step, each proof step usually
specifies two geometry objects and their relationship. The
type of a geometry object can be “line”, “circle”, “triangle”,
“point”, and so on. The relationships include “parallel”,
“perpendicular”, “similar”, “same”, “equal”, etc.

In this paper, we propose a computer-based approach to
support such geometry proving. Our work focuses on an
algorithm to understand geometry proving styles, shown in
Figure 2, and to provide assistance to geometry proving by
establishing the correspondence between geometry figures
and geometry proof scripts. The recognition of handwritten
deduction reason is not addressed in this research.

UNDERSTANDING HANDWRITTEN PROOFS
As shown in the preceding section, handwritten geometry
proofs include hand-drawn geometry figures and
handwritten geometry proof scripts. Both of them are
composed of a serial of strokes. Our algorithm recognizes
them respectively and then builds the correspondence
between them.

Figure 3. Architecture of hand-drawn geometry proof

understanding.

Figure 3 shows the architecture of our algorithm. The hand-
drawn figure recognition method deals with each stroke
separately. It consists of three steps: stroke segmentation,
primitive recognition, and primitive combination. The

recognition of hand-written proof scripts is based on proof
step identification. For each proof step, DP-based (Dynamic
Programming) symbol segmentation [8] and SVM-based
symbol recognition [6] are performed to understand the
handwritten proof step. After that, the meaning of the proof
is created through semantic interpretation. A post-
processing step builds the correspondence between the
figures and the proofs.

Recognition of Hand-Drawn Geometry Figures
In plane geometry, a geometry figure is usually composed
of points, lines, and circles. Our figure recognition method
treats each stroke separately. For each stroke, our algorithm
first segments it into sub-strokes at turning points. Then
each sub-stroke is recognized separately to be a shape
primitive (point, line, or circle). Furthermore, a hierarchy of
the primitives is constructed. Combining all the recognition
results of strokes leads to a geometry figure.

Stroke segmentation
A stroke contains a serial of points. For each stroke, it is re-
sampled according to the equal between-point distance
criterion. The re-sampled stroke can be represented as {P0,
P1, …,PN}. Pi(x, y) indicates the position of the ith point in
the stroke. Figure 4 gives an example of a re-sampled
stroke.

Figure 4. Re-sampled points of a stroke and an angle

between two adjacent lines of this stroke.

To judge whether Pi is a turning point in a stroke, the
algorithm calculates the angle θ between Line Pi Pi-1 and
Line Pi Pi+1 using the law of cosines as shown in Figure 4.
If the angle θ is smaller than a given threshold angle –
angleThres, Pi is a turning point in the stroke; otherwise, Pi
is not a turning point. In our research, angleThres is set to
be 4π /5.

After finding all turning points in a stroke, the stroke is
divided into several sub-strokes separated by turning points.
If the number of re-sampled points of a sub-stroke is less
than a given threshold, ptThres, the sub-stroke is added to
its preceding sub-stroke. After segmentation, each sub-

2 2 2
1 1 1 1

1 1

arccos
2

i i i i i i

i i i i

P P PP P P
P P PP

θ − + − +

− +

⎛ ⎞+ −
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

Hand-drawn figures Hand-written proof scripts

Segmenting the stroke at
turning points

Recognizing primitives

Combining primitives

Post-processing (building correspondence)

Segmenting symbols
in a proof step (DP)

Recognizing symbols
(SVM)

Semantic interpretation

Recognition results

Identifying proof steps

121

stroke constitutes a shape primitive. In our research,
ptThres is set to be 5.

Primitive recognition
A shape primitive could be a point, a line, or a circle. The
following formula defines how the type of a stroke is found.

()
()

,

, &
,

Point if pointNum ptThres

type Line if density lDenThres density hDenThres
Circle else

<⎧
⎪

= > <⎨
⎪
⎩

When the stroke in a shape primitive has less than ptThres
points, the primitive is a point. Line recognition is based on
stroke density. Here, we define the density of a stroke as the
ratio of the stroke’s length to its bounding box’s diagonal
length. When the density of a stroke in a primitive is
between two given thresholds, lDenThres and hDenThres,
the primitive is a line. If a stroke is not recognized as either
a point or a line, it is taken as a circle. In our algorithm,
lDenThres and hDenThres are set to be 0.7 and 1.3
respectively.

Letter labels are assigned to shape primitives. A point only
needs one letter to be separated from other points. A line
has two labels, each of which corresponds to an end of the
line. A circle also has two labels: one for the center and the
other for a point on the circle. Our algorithm keeps track of
what letters have been assigned and guarantees the
uniqueness of letter labels.

Primitive combination
After knowing shape primitives, the algorithm combines
these primitives to form a high level geometry figure. For
example, when the endpoint of a line is very close to the
endpoint of another line, the two lines are linked by a
common endpoint.

Figure 5 illustrates the recognition results of some hand-
drawn geometry figures. Figure 5(a) is a hand-drawn curve,
and Figure 5(b) shows its recognition result, a poly-line and
letter lables on individual lines. The quadrangle in Figure
5(d) is the recognition result of the drawing in Figure 5(c).
The hand-drawn graph in Figure 5(e) is recognized as a
circle in Figure 5(f).

Recognition of Handwritten Geometry Proof Scripts
The basic unit of a geometry proof script is proof step. Our
geometry proof script recognition method is based on proof
step identification. The following sections describe proof
step identification, symbol partition in a geometry item,
symbol recognition, and semantic interpretation.

Proof step identification
A proof step is usually followed by a deduction symbol or
by another step in a new line. We use this feature to identify
individual proof steps.

Figure 5. Hand-drawn geometry graphs and their

recognition results.

When the pen is up, the algorithm judges whether the
current stroke is the deduction symbol ‘}’ by the SVM-
based recognition method, which will be introduced below,
or whether it is a stroke in a new line by the spatial relations
to the current proof step. If the stroke is ‘}’, the current
proof step is finished. If the stroke is in a new line, the
current proof step is finished and a new proof step is
created. Otherwise, the DP and SVM based symbol
segmentation and recognition process are performed to get
the recognition result of the current handwritten proof step.
If the last symbol is ‘=>’, a proof step has been finished and
the user is going to start a new proof step. Otherwise, the
user is still working on the current proof step.

Symbol partition in a proof step
Dynamic programming is typically applied to optimization
problems [8]. It is used to segment a handwritten proof step
to several symbols in our algorithm.

Before symbol partitioning, the strokes in the proof step are
sorted according to the left borders of their bounding boxes.
Thus, the writing order of the symbols in a proof step is not
restricted. After stroke sorting, overlapped strokes are
merged to stroke blocks. The merged stroke blocks can be
represented as {b1, b2… bN}.

The following formula describes the approach to find
optimal symbol segmentations by dynamic programming.

() () () (){ }, min , 1, , ,D i j D i k D k j d i j= + +

[], , 1, , ,i j k N i j i k j∈ ≤ ≤ <

(a) (b)

(c) (d)

(e) (f)

122

where D(i, j) is the reliability corresponding to the optimal
symbol segmentation of stroke blocks {bi,…, bj} and d(i, j)
is the reliability of the candidate symbol that is composed
of stroke blocks {bi,…, bj}.

The symbols in a proof step have the following
characteristics: first, they have similar widths and heights;
second, the distances between stroke blocks in a symbol are
often smaller than the distances between stroke blocks in
different symbols; third, the width of a symbol is often not
too large. Thus, d(i,j) can be calculated by the following
formula:

() () () ()1, * , * * ,
,

d i j a intraDF i j b c wF i j
interDF i j

= + +

[], 1, ,i j N i j∈ ≤

where intraDF is the intra-distance factor between stroke
blocks in a symbol. interDF describes the inter-distance
between adjacent symbols; wF is the width of a candidate
symbol; and a, b, c are weights of these factors in the
overall distance(In our algorithm, these three factors are
treated equally: a=0.33, b=0.33 and c=0.33).

Suppose d’(i,j) is the normalized distance between the
bounding boxes of the stroke block bi and the stroke block
bj, intraDF(i,j) and interDF(i,j) can be calculated by the
following formulae.

() ()
1

, ' 1,
j

k i

intraDF i j d k k
= +

= −∑

()
() () ()
() ()
() ()

' 1, ' , 1 0 &

1, ' 0 &

' , 1 ' 0 &

d i i d j j if i j N

interDF i, j d' i i d if i j N

d j j d if i j N

− + + > <⎧
⎪⎪= − + > =⎨
⎪

+ + = <⎪⎩

The following formula describes the calculation of wF(i,j).
It is normalized by the average height and the maximum
width of the stroke blocks.

()
() ()

[]
(){ }

0

1,

1,
,

max

N

k

k N

width i j height k
NwF i j

width k
=

∈

−
=

∑

Symbol recognition
SVM classifier is proved to be effective to recognize hand-
drawn mathematical symbols [17]. As most symbols in
geometry proof are mathematical symbols, this research
also adopts a SVM classifier to recognize handwritten

geometry symbols. In particular, the multi-class
classification is accomplished with Libsvm [6] and the
classifier uses the RBF kernel. A handwritten symbol can
contain online features that include sequential information
about points and strokes, and offline features that are based
on the symbol’s corresponding image. As online features
and offline features could complement each other [17, 27],
both online features and offline features are used by our
classifier.

Before extracting features for the SVM input, normalization
is performed for the handwritten symbols. The normalized
symbols have fixed size and contain the same number of
points. Moreover, the image of the symbol is also generated.

Our algorithm uses the angles between adjacent points in
the strokes as the online features and uses the ratios of
black pixels as the offline features. Suppose the strokes in a
symbol have pN points and the image is partitioned into
m*m sub-images. The features used by the classifier can be
represented as follows:

1 1 2 2 1 1

1 2 *

sin ,cos ,sin ,cos ...sin ,cos ,

, ,...,
pN pN

m m

F
density density density

− −⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

() ()
1

2 2
1 1

sin i i
i

i i i i

y y

x x y y
+

+ +

−
=

− + −

() ()
1
2 2

1 1

cos i i
i

i i i i

x x

x x y y
+

+ +

−
=

− + −

where densityi is the ratio of black pixels in the ith sub-
image.

Currently, the geometry symbols that can be recognized by
our algorithm include 10 digits, 26 English letters – both
lower and upper cases, and some special symbols in
geometry (∵∴∠ + .≌⊥∽＋-∟ = ∥}⇒).

Semantic interpretation
After getting the proof recognition result, semantic
meanings of a proof step can be extracted. For example,
“+ ABC” are not just four symbols, but have the meaning
of a triangle consisting of three linked lines.

Our algorithm uses a semantic interpretation table to look
up semantic meanings. The semantic interpretation table
mainly includes two parts. One part defines the semantic
meaning of symbols that indicate geometry shapes, such as
‘ ∠ ’, ‘∟’, ‘ + ’, and ‘. ’. The other part explains the
relationship symbols that describe relationships between
geometry components, such as ‘∵’, ‘∴’, ‘≌’, ‘⊥’, ‘∽’,
‘＋’, ‘-’, ‘=’, ‘∥’, and ‘⇒ ’.

Figure 6 shows the recognition result of a handwritten
geometry proof.

123

Figure 6. Recognition result of handwritten geometry

proof.

Post-processing
With the recognition results, our algorithm builds the
correspondence between the geometry graphs and the
geometry proof scripts. The recognized figures are
represented as a serial of graph primitives and their
relationships.

After recognizing handwritten proof scripts, our algorithm
connects a proof step with geometry objects. The
correspondence between them is established by matching
the recognized letters in proof step with the labels of graph
primitives.

Such correspondence can also help to correct some errors in
the recognition of handwritten proof scripts. As the proof
scripts should be consistent with the graph, our algorithm
uses the knowledge extracted from the graph to identify
potential text recognition errors. For example, when “CD”
is incorrectly recognized as “CP”, the result can be
corrected by knowing that there’s a line “CD” in the graph
and there’s no line “CP” in the graph.

ASSISTANCE TO GEOMETRY PROOF
If a student does not understand the conditions of a
proposition, she cannot really judge the correctness of the
proposition [13, 14]. Moreover, the student may fail to
relate each proof step in a text book proof to the
accompanying figure [30]. To help students understand
geometry proof, we provide intelligent visual hints and
structure-based manipulation technique.

Intelligent hints for geometry proof
By using the correspondence between geometry figures and
geometry proof scripts, we provide intelligent hints to help
users understand geometry proving processes. The hints
update when the pen is up (Figure 7) or object manipulation
happens (Figure 1).

Figure 7 shows how intelligent hints work. When a user
writes the geometry proof scripts, the current proof step as
well as its corresponding figure is highlighted. The figures

at the top of Figure 7 are the formal geometry figures
recognized from hand-drawn figures. The bottom shows the
geometry proof scripts. The recognition result of the
handwritten geometry proof scripts is used implicitly and
not shown in the figure. In Figure 7(a), when the step of
AB//CD is written and recognized, Lines AB and CD in the
geometry figure are highlighted. In Figure 7(b), handwritten
AB in a new proof step is recognized, and Line AB in the
geometry figure is highlighted. In Figure 7(c), the proof
step of AB⊥AC is recognized, and the perpendicular lines
of AB and AC in the geometry figure are highlighted.

Figure 7. Highlighting the proof step the user is writing

and its corresponding figure.

Intelligent hints also appear when the user manipulates the
geometry proofs. For example, as shown in Figure 1, when
the user selects a proof step, the step and its corresponding
figure are highlighted.

With the intelligent hint technique, a proving process can be
replayed by highlighting each geometry proof step with its
corresponding figure. This approach can help to overcome
the difficulty in relating the proof step in a text book proof
to the accompanying figure, a big barrier in learning
geometry proof [30].

Efficient manipulation of geometry proofs
In geometry proving, some geometry proof steps may be
used several times and the user need to write the same steps
several times. Sometimes, the user may find errors in proofs
and want to delete some proof steps. Thus, it is important to
provide efficient methods to manipulate geometry proofs.

Structure-based manipulation methods of sketches are
proved to be more efficient than stroke-based approaches [3,
15]. In plane geometry, a proof consists of geometry figures
and geometry proof scripts. By recognizing hand-drawn
geometry figures and extracting the structure of handwritten
proof scripts, structured manipulation can be supported. We
designed pen gestures for structure-based selecting, deleting,
moving, cutting, and pasting operations in handwritten
geometry proofs. These structure-based methods allow the

(a) (b) (c)

Item1: Parallel<Line(A,B), Line(C,D)>

Item2: Perpendicular<Line(A,C), Line(C,D)>

Item3: Perpendicular<Line(A,C), Line(A,B)>

Deduce<<Item1,Item2>,Item3>

124

operations of handwritten geometry proof scripts at the
granularity of proof step.

For example, with structure-based manipulation, deleting a
geometric component in geometry figures can also lead to
the deletion of related proof scripts. Figure 8 demonstrates
an example of deleting a line in geometry figures. Figure
8(a) shows the selected line (in red color), its corresponding
geometry proof scripts, DE (in red color), and the deleting
gesture (in green color). Figure 8(b) is the effect after the
operation. Both the selected line and the related geometry
proof steps are deleted.

Figure 8. An example of deleting a line in geometry figure.

EVALUATION
With the proposed sketch understanding algorithm and the
assistance technique in plane geometry proof, we built a
pen-based geometry proving tool – PenProof (Figure 9).

Figure 9. The user interface of PenProof.

In PenProof, there are three separate areas for defining
geometry problems, drawing geometry figures, and writing
geometry proofs. In the figure area, the hand-drawn figures
are recognized into formal figures and dynamic geometry is
supported based on MMP/Geometer [9]. In the proof area,
handwritten proof scripts are recognized in the background
to provide assistance to geometry proving.

We conducted a study to evaluate the PenProof system. The
study had two goals: to test the recognition accuracy of our
sketch understanding algorithm, and to obtain user feedback
on the system.

Task, Subjects, Apparatus, and Procedure
The test task was to write down geometry proofs provided
by us and did not require any knowledge beyond secondary
schools, so we recruited twelve graduate students who
possessed the required geometry knowledge. The test was
on a machine equipped with a 2.4GH CPU, 4G memory and
a Wacom screen.

To test the recognition accuracy of our sketch
understanding algorithm, we provided each subject 10
figures and 10 proofs, and each subject was asked to select
and finish 4 figures and 4 proofs in PenProof. The provided
figures consisted of points, lines, and circles. The provided
proofs consisted of proof steps and deduction symbols.
However, the provided proofs did not include all the
geometry symbols supported in this paper. An additional
evaluation of the symbol recognition accuracy was
conducted by asking each subject to draw all the geometry
symbols twice.

After trying the PenProof tool, each subject was asked to
answer a post-test questionnaire to grade the graph
recognition accuracy, the structured interaction, the visual
hints, the comfort, and the enjoyment of the tool, all in a 7-
level Likert scale (1-vary bad, 7-very good).

Recognition accuracy
The evaluation results show that accuracy of hand-drawn
figure recognition is 92.1%. Most errors were at the
juncture of the graphs due to the warp of the points. Users
could correct the errors either by manipulating the formal
figures or by deleting and redrawing the figures. As for the
proof recognition, the total recognition accuracy is 87.3%.
The errors include the proof step identification errors,
symbol segmentation errors, and symbol recognition errors.
The errors of proof step identification were mainly caused
by the misrecognition of the deduction symbols.
Segmentation errors occurred because some users wrote
adjacent symbols too close. Symbol recognition errors were
due to irregularly written symbols.

As for the geometry symbol recognition, our SVM-based
geometry symbol recognizer used 20 samples for each
symbol to train the classifier. These samples were collected
from one user and were written regularly. The evaluation
results show that the recognition accuracy for the same
person achieves 96.4%. When using the classifier to

(a) Deleting a line in the geometry figure

(b) Geometry figure and proof scripts after deleting

125

recognize symbols collected from subjects, the average
accuracy is 90.1%. The errors are caused by symbols
written with irregular stroke orders or irregular symbol
shapes.

User Feedback
Figure 10 exhibits the results of subjective evaluation. As
shown, the recognition accuracy, the structured interaction,
and the dynamic visual hints all received good feedback
from subjects. In addition, the subjects thought it was
comfortable and enjoyable to use the tool.

Figure 10. Users’ ratings

While all subjects thought the tool was useful, they also
offered some constructive suggestions. Currently, the letter
labels for shape primitives are generated automatically by
the PenProof system. Some users suggested that the tool
allow a user-controlled labeling design. Some users pointed
out that the tool should support more proving styles, such as
proofs written in a two-column form.

DISCUSSION
As seen, the error rates of our current approach are relative
low. The recognition accuracies of hand-drawn figures and
hand-written proofs are 92.1% and 87.3%, respectively.

The most serious errors were related to incorrect deduction
symbols. This may frustrate subjects when they used
structured manipulation techniques and lead to relatively
low ratings on structured manipulation compared with other
ratings.

Figure 11 shows one error caused by incorrect recognition
of deduction symbols. Here, a subject tried to select the
item “AC//BD” and reuse it in a proof that followed.
However, the structured selection that operates at the
granularity of proof step selected “AC//BD}”, instead of
“AC//BD”. This error was because the deduction symbol
“}” was incorrectly recognized as “1” and consequently, led
to incorrect identification of proof items.

Figure 11. An error caused by incorrect recognition of

deduction symbol.

In addition to these errors related to recognition algorithms,
we also observed some errors produced by subjects when
they wrote proofs inconsistent with the figures. The
mismatch between drawn figures and written proofs can
cause conflict interpretations. In this situation, subjects
received no hint or even wrong hints. Figure 12 is an
example of errors caused by conflicting figure and proof.
Here, the proof step of “∠ABD=∠CDB” were written
down, but “∠ABD” did not exist in the geometry figure.
Thus, no visual hint in the geometry figure can be provided.

Figure 12. An error due to conflicting figure and proof.

To address these errors, we need to enhance our algorithms
in several ways. First, the accuracy of deduction symbols
should be further improved. Second, new algorithms are
required to detect conflicting figures and proofs.

It should be noted that in our evaluation, we did not
measure the influence of errors on performance
quantitatively. This is because of the lack of comparable
systems. We have not found any system that offers the
same level of support for hand-written geometry proof.
Thus, we focused on the evaluation of the design concept
first, rather than quantified user performance.

CONCLUSION
This paper presented a pen-based geometry proving system.
We proposed a sketch recognition algorithm to recognize
and correlate hand-drawn geometry figures and hand-
written geometry proof scripts. While the hand-drawn
figure recognition is based on the detection of shape
primitives using turning points, the hand-written geometry
proof scripts recognition is based on the identification of
proof steps. Based on the recognition results, we designed
intelligent visual hints and structured manipulation
technique to assist the understanding of geometry proving.
Results from our evaluation study show that the algorithm

1 2 3 4 5 6 7

Recognition accuracy

Structured interaction

Visual hints

Comfort

Enjoyment

Users' Ratings

126

is effective and the assistance is useful. This pen-based
geometry theorem proving approach has the potential to
enhance the learning of geometry proofs by following the
natural and traditional proving approach and meanwhile
provide intelligent help to users.

The contribution of this research lies in two aspects.
Technically, we have developed algorithms to establish the
connections between hand-drawing and hand-written
structures. While we applied our techniques in a geometry
proving system, our algorithms can be expanded into other
areas that have similar tasks.

Cognitively, the proposed “intelligent hint” design suggests
a way to reduce cognitive loads in pen-based user interfaces
by leveraging intelligent methods. In conventional user
interfaces, such as WIMP-based designs, techniques to help
reducing cognitive loads (e.g., highlighting relevant objects)
are mature. However, objects in pen-based UI are usually
not well-structured and well-recognized, so it is a challenge
to use these techniques to assist users. Our approach shows
that based on user action contexts and object
correspondence, we can provide useful cues to reduce
cognitive loads.

In the future, we are interested in extending our research in
the following directions. First, we will enhance our
recognition algorithms to address the limitation of our
current algorithms. The current method could only
recognize a limited set of symbols, and only support limited
graph types and proving styles. In the future, we will try to
recognize more characters besides current geometry
symbols.

Second, we will explore other error correction strategies for
PenProof. Currently, users are allowed to correct errors by
erasing and rewriting the geometry proof. In the future,
other error correction strategies, such as the multimodal
methods, would be explored.

Third, we will extend our research into other areas.
Although this research focuses on pen-based geometry
theorem proving in plane geometry, pen-based proving
techniques could be used in solid geometry theorem
proving as well. In the future, we will support proving in
solid geometry by recognizing and understanding hand-
drawn solid geometry figures.

ACKNOWLEDGMENTS
This research is supported by National Key Basic Research
and Development Program of China under Grant No.
2009CB320804, the National Natural Science Foundation
of China under Grant No. U0735004, No.60603073, and the
National High Technology Development Program of China
under Grant No. 2007AA01Z158, No.2009AA01Z337.

REFERENCES
1. Alvarado, C. and Davis, R. (2001). Resolving

ambiguities to create a natural sketch based interface. In
Proc. IJCAI 2001, AAAI Press, 1365-1371.

2. Anderson, J.R., Boyle, C.F., Yost, G. (1985). The
geometry tutor. In Proc. IJCAI 1985, 1–7.

3. Ao, X., Li, J.F., Wang, X.G. and Dai, G.Z. (2006).
Structuralizing digital ink for efficient selection. In
Proc. IUI 2006, ACM Press, 148-154.

4. Cabri Geometry.
http://www.cabri.com/

5. Chazan, D. (1993). High school geometry students’
justification for their views of empirical evidence and
mathematical proof. Educational Studies in
Mathematics, 24(4), 359-387.

6. Chang, C.C. and Lin, C.J. (2001). LIBSVM: a library
for support vector machines, 2001.
http://www.csie.ntu.edu.tw/_cjlin/libsvm.

7. Chou, S.C., Gao, X.S. and Zhang, J.Z. (1996).
Automated Generation of Readable Proofs with
Geometric Invariants. J. Autom. Reasoning. 17(3), 349-
370.

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein,
C. (2001). Introduction to Algorithms, 2nd ed. MIT
Press, Cambridge, USA, 2001.

9. Gao, X.S. and Lin, Q. (2002). MMP/Geometer - a
software package for automated geometry reasoning. In
Proceedings of ADG 2002, Springer-Verlag, 44-46.

10. GeoAssistor: A Pen-based Geometry Learning Tool for
Students.
http://research.microsoft.com/en-
us/um/beijing/projects/research/education/penbased.asp
x

11. Geometer’s Sketchpad.
http://www.dynamicgeometry.com/

12. Geometry Explorer.
http://homepages.gac.edu/~hvidsten/explorer/

13. Hanna, G. (1998). Proof as understanding in geometry.
Focus on Learning Problems in Mathematics. 20(2&3),
4-13.

14. Hoyles, C. and Healy, L. (1999). Linking informal
argumentation with formal proof through computer-
integrated teaching experiences. In Proceedings of the
23rd conference of the international group for the
psychology of mathematics education, 1999, 105-112.

15. Jiang, Y.Y., Tian, F., Wang, X.G., Zhang, X.L., Dai,
G.Z. and Wang, H.A. (2009). Structuring and
manipulating hand-drawn concept maps. In Proc. IUI
2009, ACM Press, 457-462.

16. Kara L.B. (2004). Automatic parsing and recognition of
hand-drawn sketches for pen-based computer interfaces.
Doctor’s dissertation, Department of Mechanical
Engineering, Carnegie Mellon University, Pittsburgh,
PA, USA, 2004.

17. Keshari, B. and Watt, S.M. (2007). Hybrid mathematical
symbol recognition using support vector machines. In

127

Proc. ICDAR 2007, IEEE Computer Society Press, 859-
863.

18. Knuth, E.J. (2002). Teachers’ conception of proof in the
context of secondary school mathematics. Journal of
Mathematics Teacher Education, 5(1), 61-88.

19. Kortenkamp, U. and Richter-Gebert, J. (2004). Using
automatic theorem proving to improve the usability of
geometry software. In Proceedings of the Mathematical
User Interfaces Workshop 2004, 2004.

20. LaViola, J. and Zeleznik, R. (2004). MathPad2: A
System for the Creation and Exploration of
Mathematical Sketches. ACM Transactions on
Graphics. 23(3), 432-440.

21. Li, J.F., Zhang, X.W., Ao, X. and Dai, G.Z. (2005).
Sketch recognition with continuous feedback based on
incremental intention extraction. In Proc. IUI 2005,
ACM Press, 145-150.

22. Liu, Y.Y., Lin, Q. and Dai, G.Z. (2007). PIGP: A Pen-
Based Intelligent Dynamic Lecture System for
Geometry Teaching. In Proc. Edutainment 2007.
Springer Berlin / Heidelberg, 381-390.

23. Narboux, J. (2007). A graphical user interface for formal
proofs in geometry. Journal of Automated Reasoning.
39(2), 161-180.

24. Ouyang, T.Y. and Davis, R. (2007). Recognition of
Hand Drawn Chemical Diagrams. In Proc. AAAI 2007,
AAAI Press, 846-851.

25. Paulson, B. and Hammond, T. (2008). PaleoSketch:
accurate primitive sketch recognition and beautification.
In Proc. IUI 2008, ACM Press, 1-10.

26. Senk, S.L. (1985). How well do students write geometry
proofs? The mathematics teacher. 78(6), 448-456.

27. Tanaka, H., Nakajima, K., Ishigaki, K., Akiyama, K.
and Nakagawa, M. (1999). Hybrid pen-input character
recognition system based on integration of online-
offline recognition. In Proc. ICDAR 1999, ACM Press,
209–212.

28. Wang, X., Shi, G.S. and Yang, J.F. (2009). The
understanding and structure analyzing for online
handwritten chemical formulas, In Proc. ICDAR 2009,
IEEE Computer Society Press, 1056-1060.

29. Wong, W.K., Chan, B.Y. and Yin, S.K. (2005). A
Dynamic Geometry Environment for Learning Theorem
Proving. In Proceedings of the 5th IEEE International
Conference on Advanced Learning Technologies
(ICALT) 2005, IEEE Computer Society Press, 15-17.

30. Yang, H.H., Wong, W.K. and Chan, B.Y. (2006) Using
computer-assisted instruction for the visualization of
proof tree to improve the reading comprehension of
geometry proofs. In International Workshop on Human-
Computer Interaction and Learning Technologies 2006,
1431-1436.

128

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

