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Concept maps are an important tool to organize, represent and share knowledge. Building a concept map 
involves creating text-based concepts and specifying their relationships with line-based links. Current concept 
map tools usually impose specific task structures for text and link construction, and may increase cognitive 
burden to generate and interact with concept maps. While pen-based devices (e.g., tablet PCs) offer users more 
freedoms in drawing concept maps with a pen or stylus more naturally, the support for hand-drawn concept map 
creation and manipulation is still limited, largely due to the lack of methods to recognize the components and 
structures of hand-drawn concept maps. This paper proposes a method to understand hand-drawn concept maps. 
Our algorithm can extract node blocks, or concept blocks, and link blocks of a hand-drawn concept map by 
combining dynamic programming and graph partitioning, recognize the text content of each concept node, and 
build a concept-map structure by relating concepts and links. We also design an algorithm for concept map 
retrieval based on hand-drawn queries. With our algorithms, we introduce structure-based intelligent 
manipulation techniques and ink-based retrieval techniques to support the management and modification of 
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1. INTRODUCTION  

Concept maps are often used as a tool for knowledge organization, representation, and 

sharing [Coffey et al. 2002; Tergan 2005; Novak and Cañas 2008]. In a concept map, 

important concepts are presented as text-based nodes and relationships among concepts 

are visualized as line-style links to connect relevant concepts. Concept maps could be 

used for education and cooperation in schools and corporations [Novak and Gowin 1984; 

Novak 1998]. In the process of text analysis, concept map could be used to structure 

textual knowledge and achieve a better recall of information [Halimi 2006]. Currently, 

people can use tools like MindManager1, Inspiration2 or FreeMind3 to create concept 

maps with a keyboard and mouse. This keyboard-and-mouse approach suffers two 

problems. First, it usually requires users to follow specific task structures (e.g., two 

concept nodes must be created before their link can be generated), which could distract 

users from their primary tasks. Second, it becomes inefficient and ineffective to use 

keyboard and mouse on devices that support more direct interaction, such as pen-based 

and touch-based computers, because such devices usually only provide a virtual keyboard 

and offer gesture-based interaction that is different from mouse behaviors. 

Hand-drawn concept map tools can help to overcome these two challenges. They 

allow users to write and sketch directly with gestures. However, existing tools are still 

weak when processing hand-drawn concept maps. It is difficult to create hand-drawn 

concept maps in a natural and fluent fashion. For example, MindManager can only 

handle concept nodes with pen gestures, not concept links; Inspiration requires users to 

follow specific drawing rules and orders to make nodes and links recognizable; sKEA 

[Forbus and Usher 2002] demands explicit information about where a symbol starts and 

ends in concept maps; and Dashboard 4  allows drawing of concept maps, while the 

meaning and structure of concept maps are not understood. Moreover, users also face 

challenges in other high-level tasks, such as manipulating and searching hand-drawn 

concept maps.  

The problem is largely due to the lack of methods to recognize and structure node and 

link components of hand-drawn concept maps. This paper proposes a recognition 

algorithm to extracts nodes, links, and their relationships from a hand-drawn concept map 

that is created without any constraint on drawing order. Meanwhile, a retrieval algorithm 

                                                           
1 MINDMANAGER. http://www.mindjet.com/products/mindmanager_pro/default.aspx.  
2 INSPIRATION. http://www.inspiration.com/productinfo/inspiration/index.cfm. 
3 FREEMIND. http://freemind.sourceforge.net/wiki/index.php/Main_Page.  
4 DABBLEBOARD. http://www.dabbleboard.com/. 
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is designed for hand-drawn concept maps. Figure 1 shows what our recognition algorithm 

can deliver. Figure 1(a) is a hand-drawn concept map about the Olympics. All 

handwritten concept nodes are in Chinese (English translation is provided by authors to 

indicate the meaning of each node). Figure 1(b) illustrates the extracted structure and the 

recognition result with our algorithm. In this figure, strokes belonging to the same node 

block are put a bounding box and the text below each bounding box is the recognition 

result of the node block; Link strokes are also recognized and thick dashed lines are 

added to connect node blocks and link blocks. These dashed lines can help users evaluate 

whether the relationships between node blocks and link blocks are correctly understood 

by the algorithm. 

 
(a)                                                                                           (b) 

Figure 1. A hand-drawn concept map (a) and its extracted structure (b). 

The paper is structured as the following. First, we review related research, and then 

outline a set of features commonly seen from hand-drawn concept maps based on our 

user interviews. Next, we describe the details of the recognition algorithm and the 

retrieval algorithm, and present a set of intelligent manipulation techniques for the 

management and modification of concepts maps based on recognized structures. 

Furthermore, we introduce our research on evaluating the accuracy and usability of our 

approach. Finally we discuss the results of our research and conclude the paper with 

future research directions. 

2. RELATED WORK 

Because our interest is in hand-drawn concept maps, literature reviewed here concerns 

previous research on sketch understanding, sketch manipulation, and sketch retrieval. 

2.1 Sketch understanding  

Sketch understanding has been studied by many researchers since 1970s. Research has 

been conducted on domain-specific sketch recognition, such as recognition of 

handwritten mathematical expressions [Chan and Yeung 2000], handwritten organic 

chemical formulae [Ouyang and Davis 2007], hand drawn UML [Hammond and Davis 
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2002], and handwriting notes [Li et al. 2002]. These methods address sketch 

understanding problems in their specific domains, but this domain-specific optimization 

approach cannot be directly applied in the structure understanding of more general, out-

of-domain hand-drawn diagrams, such as concept maps. Chik et al [2007] tried to 

understand pen-based mind-maps by identifying the first node as the central node and 

then finding sub-nodes connected to it recursively.  

Some researchers have investigated sketch understanding methods that can be used 

more broadly. Alvarado [2004] and Shilman et al. [2002] proposed grammar-based 

sketch recognition methods, but due to the difficulty in defining grammars for various 

types of concept maps, this approach is inappropriate to concept map structure 

recognition. The method by Kara and Stahovich [2004] achieved diagram recognition 

with a hierarchical approach to parse and recognize strokes, but it faces challenges when 

recognizing concept maps because of the similarity between link strokes and some node 

strokes. While the joint probabilistic model [Szummer and Cowans 2004] can 

simultaneously group and recognize inks based on dependencies among ink fragments 

and user feedback, different node styles and link styles in concept maps pose challenges 

in defining context dependency. The recognition-based segmentation method by Shilman 

et al. [2004] used dynamic programming to segment strokes. However, the increase of 

stroke number can dramatically decrease the time efficiency of this method. The 

recognition method by Gennari et al. [2005] is based on geometry and domain knowledge 

and is suitable for network-like diagrams that contain isolated, non-overlapping symbols. 

It requires strokes in one symbol be successive and cannot handle concept maps, in which 

one node is not always drawn in one step. 

2.2 Sketch manipulation 

Research has shown that to manipulate a hand-drawn diagram, techniques based on an 

underlying structure of the diagram are effective and efficient [Li et al. 2002; Ao et al. 

2006; Jiang et al. 2009, 2010]. For example, Ao et al. [2006] showed that structuralizing 

raw digital ink as multiple hierarchies can facilitate selection tasks and improve task 

performance, and Li et al. [2002] found that allowing user interaction with note semantics, 

rather than individual strokes, can better help notes manipulation.  

Some sketch manipulation tools have been designed. Stretch-A-Sketch [Gross 1994] 

is a pen-based drawing program that combines recognition of hand-drawn glyphs with 

constraint-based maintenance of spatial relationship. However, its recognizer does not fit 

for hand-drawn concept maps that have different node and link styles, and the program 

can only handle local constraints, not global spatial constraints. The structured editing 
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tool by Moran et al. [1995] can detect implicit structures that humans see in drawing, but 

this technique only supports editing list, text, table, and outline structures over 

handwritten scribbles and typed text. Scanscribe [Saund et al. 2003] is a novel image 

editing program emphasizing easy selection and manipulation of material found in 

documents based on visual perceptual organization theories (e.g., the Gestalt laws). It is 

acted on offline sketch which is different from concept maps with strokes, however. The 

pen-based mind-mapping tool by Chik et al. [2007] can recognize hand-drawn 

hierarchical structures and allow the revision of the recognized structure. However, this 

tool can only handle hierarchical structures and has a strict requirement for the order of 

objects to be drawn (e.g., a parent node must be drawn before any child node). 

2.3 Sketch retrieval 

Researchers have studied methods for sketch and online document retrieval. Liang et al. 

[2008] used biased SVM classification for sketch retrieval by matching query sketch with 

sketches in libraries based on their weighted spatial distance. Leung [2003] proposed a 

method to compare the features of sketches with global and local matching. However, 

these methods, which are primarily based on stroke correspondence, are inappropriate for 

hand-drawn concept map retrieval, because concept maps with similar concept structures 

may have different graphics appearances. As for online document retrieval tasks, 

InkSeine allows searching in formal texts by recognizing users’ handwriting into text 

[Hinckley et al. 2007]; Jain and Namboodiri [2003] proposed a method to index and 

retrieve online handwritten documents; and Jawahar et al. [2009] tried to retrieve online 

handwriting documents by synthesizing and matching handwritten data. However, these 

methods can only support search based on sketched text, and cannot be used for 

searching concept maps, which have graph structures.  

Graph matching is widely used in areas such as image analysis, document processing, 

biometric identification, image databases, and video analysis [Conte et al. 2004]. In Zhou 

et al. [2005], a graph-matching approach was used for intelligent multimedia retrieval. 

Cordella et al. [2001] presented a graph-matching algorithm to address the problems of 

graph and graph-subgraph isomorphism. As hand-drawn concept maps have graph 

structures, it is possible to retrieve concept maps using graph matching methods. 

However, to the best of our knowledge, we have not found such graph matching 

techniques used in hand-drawn concept map retrieval.  

3. CHARACTERISTICS OF HAND-DRAWN CONCEPT MAP  

To design tools that can handle the complexity of concept maps created by different 

people and with different styles, we first conducted an interview study to capture 
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common structural features of hand-drawn concept maps. We interviewed 12 people who 

often use concept maps. Two of them have used computer-based concept maps before. 

We asked them to draw concept maps with pen and paper. Figure 2 shows three concept 

maps from them.  

 
(a)                                                      (b)                                                  (c) 

Figure 2. Three hand-drawn concept maps on paper. a) a concept map about high-school chemistry; b) a 

diagram on the relationship among some concepts in Human-Computer Interaction; c) a bike-travel plan.  

 

Based on drawings collected from subjects, we identified the following features of 

hand-drawn concept maps: 

 Concept maps can have various spatial layout styles, such as top-down style 

shown in Figure 2(a), center-out style in Figure 2(b), or left-right style Figure 

2(c). In addition, they can have different structural styles: as a tree, or as a 

network. However, despite different layout and structural styles, all concept 

maps are diagrams with basic node and link elements. 

 Concept nodes and links can also have different styles. Nodes may have a 

bounding shape (e.g., box, oval) or not. Link can be a line with arrow or a 

simple line. Most links are not curved.  

 There are two kinds of relationships between nodes: a parent-child relationship, 

which is indicated by unidirectional arrows connecting two nodes, or a brother-

brother relationship indicated by a non-directional line or a bidirectional arrow 

between two nodes. 

 In addition to these representation features, we also observed people’s different 

drawing habits. Some people drew all concept nodes first and then added links 

between them, while some drew links and nodes in random order. As for 

concept nodes with bounding shapes, some people drew node content first and 

then the bounding shape, while some did in the opposite way. Furthermore, 

people did not always finish a node in one step. They may draw part of a node 
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first and then finish it after other links or nodes. In addition, most links are 

drawn in one stroke. Although different users have different preferences for 

drawing styles, we did not find a correlation between users’ experience of 

computer-based concept maps and the concept map styles they drew. 

During the interview, some people mentioned that while it was easy to create concept 

maps on paper, it was often difficult to edit them. Moreover, it was inconvenient to 

retrieve concept maps in their notes. They would like to have a computer-based concept-

map tool that allows them to create a concept map easily and at the same time to edit, 

organize and retrieve it conveniently. In addition, users who have used computer-based 

concept maps were glad and excited to use a hand-drawn concept map tool, largely 

because hand-drawn concept maps are more intuitive and flexible.  

To address these needs, we developed a hand-drawn concept map understanding 

algorithm to extract concept map structures and then designed intelligent manipulation 

techniques to manipulate concept maps through extracted structures. Moreover, we 

designed retrieval technique for hand-drawn concept maps.  

4. UNDERSTANDING OF HAND-DRAWN CONCEPT MAPS  

4.1 Hand-drawn concept map understanding algorithm 

The key to understanding concept map is to extract concept nodes and links. In a hand-

drawn concept map, node blocks and link blocks are often close to or even connected to 

each other, and segmenting nodes and links only based on stroke clustering is infeasible. 

One way to separate node blocks from link blocks is to recognize link strokes first and 

then use these link strokes as delimiters to get individual node blocks [Kara and 

Stahovich 2004]. However, this approach has a problem in handling node strokes similar 

to link strokes, which would lead to over-segmentation result. We address this over-

segmentation issue by developing an algorithm that combines dynamic programming 

[Cormen et al. 2001] and graph partition. Dynamic programming is used to extract 

optimal link blocks and node blocks and meanwhile to merge over-segmented node 

blocks. Graph partition is adopted to decompose a large graph into smaller subgraphs to 

improve the time efficiency. 

Our algorithm has five steps to understand a concept map based on hand-drawn 

strokes. The first preprocessing step judges each stroke’s type, merges non-link strokes, 

and represents the concept map as a graph. The nodes of the graph are stroke blocks and 

the edges are relationships between stroke blocks (e.g., their distance). The second step 

partitions the graph into several subgraphs by a graph partitioning algorithm. The third 

step extracts node blocks and link blocks from each subgraph by using dynamic 
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programming. The fourth step generates the concept map structure based on the blocks 

obtained from Step 3. The final step recognizes concept nodes to get a semantic concept 

map. The following sections provide more details of each step of our algorithm (The 

pseudo-codes are given in Appendix). 

4.1.1 Preprocessing 

The input of this step is a series of strokes {s1,s2,…,sN}, where si is the ith stroke and N is 

the total stroke number, and the output is a graph to store preprocessed blocks. Our 

algorithm first uses the $1 recognizer [Wobbrock et al. 2007] to identify whether a stroke 

is a link stroke. Here, we assume a link stroke resembles a straight line or a line with 

arrow. Neighboring non-link strokes are merged to blocks, and a graph is created to hold 

these stroke blocks. 

Whether two non-link strokes should be merged is based on their distance. If the 

distance between two stroke blocks is smaller than a threshold value and neither stroke 

block is a link stroke block, they are merged; otherwise, they are two separate blocks. 

Merged stroke blocks can be represented as {b1, b2, …, bn}, where bi={si1, si2, …,sim}. 

With all stroke blocks after merging, a weighted undirected graph G can be built: 
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The nodes in G represent stroke blocks and the edges in G indicate the relationships 

between stroke blocks. wij is the distance between blocks bi and bj. weightThres is set to be 

1.5 times of the average diagonal length of the bounding boxes of all stroke blocks. 

Figure 3(a) shows a hand-drawn concept map about some provinces and cities in 

China. The nodes were written in Chinese. (English translation is provided by authors to 

show the meaning of each node.  Here, “Guizhou” and “Sichuan” are two neighboring 

provinces in Southwest China, and “Chengdu”, “Dujiangyan” and “Wolong” are three 

cities in the Sichuan province.) Figure 3(b) shows 13 stroke blocks after pre-merging. 

Some of them are over-segmented, such as (0,1), (3,4), (6,7) and (11,12). The vertical 

stroke in stroke block 1 is recognized as a line stroke, but it is actually a stroke that is part 

of the character in stroke block 0. Similarly, stroke blocks 4 and 7 are not line strokes, 

and should be with stroke blocks 3 and 6, respectively. Stroke blocks 11 and 12 are 

recognized as two stroke blocks because of their distance, but they are actually two 

characters of one single concept context. Figure 3(c) is the graph G corresponding to 
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Figure 3(b). In G, edges connected to node b4 include (b4,b2), (b4,b3), (b4,b5), (b4,b8), and 

(b4,b10), while the stroke block b4 is adjacent to blocks b2, b3, b5, b8, and b10 in Figure 3(b).  

 
Figure 3. Preprocessing result: (a) stroke blocks; (b) a graph to represent stroke blocks and their relationships. 

 

4.1.2 Graph decomposition with graph partitioning 

The second step of our algorithm is to partition the graph G into several subgraphs with a 

graph partitioning algorithm. The time efficiency of block extraction with dynamic 

programming is greatly influenced by the node number of G, so a divide-and-conquer 

strategy was adopted to first partition G into several smaller subgraphs and then dynamic 

programming was used to extract blocks in each subgraph. This graph partitioning 

technique has been widely used in such areas as VLSI design, transportation management, 

and data mining. Our algorithm is based on the graph partitioning method in hMETIS 

[Karypis and Kumar 1998]. Given a graph G=(V,E), the time to partition G to two 

subgraphs is O(|V|+|E|) [Karypis and Kumar 1998]. 

Figure 4 shows the flowchart of our graph partitioning:  

 
Figure 4. The flowchart of graph partition 

gpThres is the maximum node number that a subgraph could have and it equals to 8 in 

this research. When the node number of G is less than gpThres or equals to gpThres, 

dynamic programming is applied to find the optimal block segmentation. If the node 

(a)                                                         (b)                                                     (c) 
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number is larger than gpThres, the graph is further divided into two subgraphs. The 

process iterates until the node numbers of all subgraphs are not larger than gpThres. 
 

4.1.3 Block extraction by dynamic programming 

Dynamic programming can extract optimal stroke blocks and merge preprocessed over-

segmented blocks. Our algorithm first builds a candidate block set S. A stroke block after 

preprocessing is a candidate block and a stroke block together with its adjacent blocks 

constitutes a candidate block as well.  

Then, our algorithm calculates the reliability of each candidate block. The reliability of 

a block is determined by three factors: densityFactor(V’), which is the ratio of stroke length 

to its bounding box’s diagonal length; distFactor(V’), which is the inverse of the distance 

between constituent stroke blocks; and contextFactor(V’), which is related to the 

relationships between constituent stroke blocks. If V’ is a candidate block in S (V’∈ S), its 

reliability R(V’) can be computed by the following formula. 

( ) ( ) ( ) ( ) ( )' * ' * ' 1 * 'R V a densityFactor V b distFactor V a b contextFactor V= + + − −  

where a, and b are coefficients.  

The task of block extraction is to find the optimal candidate block set {V1, V2, … VM}, 

where Vi = {bi1, bi2, … biN’} is a candidate block and is composed of preprocessed blocks bi1, 

bi2, … biN’ . The following formula describes the approach to find optimal block 

segmentations by dynamic programming. 
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C(V) is the reliability corresponding to the optimal block segmentation of V. It is the 

maximum value of the valid segmentations. R(V) is the reliability of a candidate block V. 

φ(R(V’),C(V-V’)) defines the strategy to combine sub-problem V’ and sub-problem V-V’, 

and is written as: 

( ) ( )( ) ( ) ( )' * ' ' * '
' , '

V R V V V C V V
R V C V V

V
φ

+ − −
− =  

where, |V| is the number of nodes in V. 

When |V| ≤ 1, there’s no sub-problem. When |V| > 1 and V is in the candidate set S, 

the optimal reliability of V is the maximum value of V, or the maximum value of all 

combinations of V’ and V-V’; otherwise, the optimal reliability is the maximum value of 
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all combinations of V’ and V-V’. Hash mechanism is used to store the optimal partition 

results of sub-problems and their reliabilities. 

4.1.4 Concept map structure extraction 

The final concept map structure is represented in the form of an undirected graph 

Goutput(V,E). Every edge (vi, vj) satisfies vi.type!=vj.type, i.e., node blocks and link blocks 

are adjacent in a concept map. In addition to the type attribute vi.type, vi has another 

attribute vi.text， which indicates the recognition result of concept node vi.  
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Because a link can connect at most two nodes, a concept map structure can be 

extracted by identifying two node blocks for each link block. For complex concept maps, 

multiple node blocks may be found at one end of a link block. In this situation, only the 

block that is closest to the end of the link is considered. Following this approach, all node 

blocks can be tied to relevant link blocks. As a result, the structure of a concept map is 

extracted.  

In addition, we extract parent-child relationships and brother relationships from the 

graph Gs. These relationships can be determined by the types of link blocks people drew, 

as described in Section 3.  

4.1.5 Concept node recognition 

Concept maps with semantic meanings may be used for concept map searching. We 

recognize each concept node to get its corresponding text. For each node vi with node 

type (vi.type=node), our concept node recognition method extracts its attribute vi.text. For 

a link node vj (vj.type=link), vj.text is set to empty string 

A concept node may have a bounding box or not. So the first step to recognize a 

concept node is to identify bounding strokes from handwritten texts in a node. The 

bounding strokes are those strokes by which text strokes are enclosed. In addition, the 

bounding strokes are often drawn at the beginning or at the end of the concept node. We 

distinguish bounding strokes from text strokes by utilizing the spatial and temporal 

relations between them. For handwritten texts, we used Microsoft Tablet PC Platform 

SDK* to recognize users’ handwriting.  

                                                           
* MICROSOFT TABLET PC PLATFORM SDK.  
http://www.microsoft.com/downloads/details.aspx?FamilyID=4B14B74A-27E4-42C4-862F-

273F6302EA4F&amp;displaylang=en&displaylang=en 
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Figure 5 shows the effects of concept map structure extraction and node recognition. 

Figure 5(a) demonstrates stroke blocks extracted from two sub-problems by dynamic 

programming. Figure 5(b) shows the relationships between nodes and links of the 

concept map with added thick dashed lines to connect nodes and links. Figure 5(c) 

illustrates the recognition results of concept nodes. 

 
Figure 5. The structure extraction and recognition results: (a) stroke blocks after dynamic programming; (b) 

relationships between nodes and links; (c) recognition result of concept nodes 

 

4.2 Hand-drawn concept map retrieval algorithm  

We also designed an algorithm to support concept-map retrieval based on hand-drawn 

query. Our algorithm focuses on the structure and semantics of a sketched query and 

search concept maps by using the extracted concept map from hand-drawn query. The 

process of our hand-drawn concept map retrieval algorithm is shown in Figure 6. 

 
Figure 6. Flowchart of hand-drawn concept map retrieval algorithm 

As shown, in our algorithm, an input query is first understood to get its corresponding 

semantic concept map. Then, graph matching algorithm is applied to retrieve concept 

maps that match the query.  

4.2.1 Similarity between concept map nodes 

As the graph matching algorithm is based on the semantic concept maps, we need to 

define the similarity between concept nodes.  

Users’Hand-drawn 
concept maps & 

semantic concept maps

Searched results

Input query

Hand-drawn concept map understanding

Semantic 
concept map

Graph matching

(a)                                                       (b)                                                       (c) 
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Given concept nodes a and b, the following formula defines whether these two nodes 

are the same.  

( ) ( ) ( )( ),      if . . . , .
,

,    else

true a type b type sim a text b text simThres
same a b

false

⎧ == ∧ >⎪= ⎨
⎪⎩

 

When a and b have the same node type and the similarity between a.text and b.text is 

larger than simThres, they are considered to be the same. 

The similarity between a.text and b.text is calculated by considering Levenshtein 

Distance (LD) [Levenshtein 1966] and the longest common substring between them. As 

the recognition of users’ handwriting could not be perfect, LD allows finding concept 

nodes with some character recognition errors. For example, users’ handwriting of the 

word “flash” may be misrecognized as “flush”. As the LD between “flash” and “flush” is 

small, we can still find “flash” with the misrecognized word. By adopting the longest 

common substring, searching based on a substring of a concept node is possible.  For 

example, “bread” could be used to search “bread and milk”. 

( ) ( )
1 ( . , . ). , . max ,

( . , . ) min ( . ), ( . )
commonSubNum a text b textsim a text b text

edit_distance a text b text len a text len b textα β
⎛ ⎞

= ⎜ ⎟⎜ ⎟+ ∗⎝ ⎠
 

4.2.2 Graph matching algorithm 

When a user provides a concept map sketch for search, our algorithm intends to find all 

the similar concept maps and sub-concept maps. Thus, the retrieval of hand-drawn 

concept maps can be considered as a graph-subgraph isomorphism problem. Moreover, 

as the hand-drawn concept map consists of nodes and links that contain attributes, it can 

be seen as an attributed relational graph. The graph matching algorithm VF2 proposed by 

Cordella et al. [2001] could be used to solve the graph-subgraph isomorphism problem on 

Attributed Relational Graphs and could work with very large graphs.  

Our retrieval algorithm is based on VF2 algorithm and our implementation is based 

on the graph matching library VFLib*. Suppose G1 is the graph corresponding to the 

input query and G2 is a graph corresponding to a hand-drawn concept map in the storage, 

our graph matching algorithm tries to find a mapping M between G1 and a subgraph of 

G2.   

Figure 7 illustrates how our retrieval algorithm works. Figure 7(a) is a hand-drawn 

query for concept maps. Figure 7(b) and Figure 7(c) are the search results and the 

highlighted strokes correspond to the query input. 

                                                           
* VFLib. http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html 
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Figure 7. The hand-drawn concept map for searching (a) and the corresponding searched results (b-c). 

 

5. INTELLIGENT MANIPULATION OF CONCEPT MAPS 

Based on the hand-drawn concept map understanding algorithm and retrieval algorithm, 

we design structure-based manipulation techniques and ink-based retrieval techniques for 

hand-drawn concept maps. 

As concept maps are often used for creating and refining knowledge representations, 

people need to modify concept maps frequently. Therefore, natural and efficient 

manipulation techniques are very important to a concept map drawing tool. To support 

natural and efficient manipulation of hand-drawn concept maps, we developed a set of 

pen gestures that allow users to handle concept maps by directly acting on extracted 

structures.  

Selection is essential for editing concept maps. Operations like scaling and translating 

are targeted for selected objects. With structures extracted from hand-drawn concept 

maps, structuralized selection becomes feasible. We designed three pen gestures to select 

stroke blocks at different levels.  Figure 8 demonstrates these gestures. A user can select 

components in a concept map in three different ways: 1) tapping a stroke block to select 

the block – a link or a node; 2) drawing a closed curve to select multiple blocks; and 3) 

drawing a straight line over a node block to select the block as well as all its child node 

blocks and relevant link blocks. The third selection method is a semantic-based technique 

that considers the relationships among node blocks.  

 
Figure 8. Three kinds of selection techniques. 

 

(a) Tapping (b) Selected 
block by tapping 

(c) Close curve (d) Selected blocks 
by close curve 

(e) Straight line (f) Selected blocks 
by straight line 

(a) Query input                    (b) Searched result                (c) Searched result 
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This structure-based selection can simplify certain manipulation tasks. For example, a 

user can easily move part of a concept map part around while altering its structure as 

shown in Figure 9.  

                                                 
 

 

 

Figure 9. Translating part of a concept map without changing its structure.  

 

In addition, other pen gestures were designed for manipulating concept maps (Figure 

10). The user can exchange concept nodes (Figure 10a and 10b), scale a concept map 

(Figure 10c and 10d), delete part of a concept map (Figure 10e and 10f), correct errors 

(Figure 10g and 10h), and copy a concept map (Figure 10i and 10j). These gestures are 

similar to those designs in systems like MindManager.  

 

 
Figure 10. Examples of pen gestures for manipulating hand-drawn concept maps.  

 

(i) Copying                                                   (j) Concept map after copying     

(g) Correct error by 
selecting link strokes 

(h) Concept map after 
error correction 

(f) Concept map 
after deleting 

(e) Deleting gesture 

(b) Concept map after 
node exchange 

(c) Scaling up                 (d) Concept map after scaling up     (a) The original 
concept map 

(a) Selected stroke 
blocks  

(b) Concept map after 
translation 
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We also implemented some simple gesture tools that allow users to correct drawing 

errors (e.g., erasing sketches, redrawing sketches). It should be noted that error correction 

techniques have been studied by many researchers [Ao et al. 2007; Wang et al. 2006] and 

are not the focus on this research. Our implementation of error correction tools aimed to 

improve the effectiveness of our system.  

 

6. EVALUATION 

Based on our concept map understanding algorithm and the proposed intelligent 

manipulation and searching techniques, we designed a pen-based concept map drawing 

tool – ConceptSketch (Figure 11), to support drawing, manipulating and searching 

concept maps. 

 
Figure 11. The user interface of ConceptSketch. 

With the prototype, we conducted a study to evaluate the accuracy of concept map 

understanding, and the usability of our intelligent manipulation techniques. We also 

collected user feedback on the use of our prototype. 

6.1 Accuracy of concept map understanding 

Our evaluation on algorithm accuracy focused on the accuracy of understanding hand-

drawn concept maps. We did not examine the accuracy of concept map retrieval 

separately. This is because among three factors involved in the retrieval accuracy—

structure extraction accuracy, concept node recognition accuracy, and graph matching 

accuracy, the first factor is the accuracy of understanding concept map and the other two 

are determined by the performances of the Microsoft Platform SDK and VFLib, 

respectively, which are beyond the scope of this research.   

To evaluate structure understanding accuracy, we focused on the effectiveness and 

efficiency of the algorithm. Our test was on a machine equipped with a 2.4GH CPU, 2G 
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memory and a Wacom screen. Test data consisted of 45 hand-drawn concept maps from 

ten student subjects. As for layout styles, 15 concept maps had a top-down style, 15 had a 

left-right style and 15 had a center-out style. Twenty five concept maps had tree structure 

while the others had network structure. About one third of concept maps had different 

node and link styles. The numbers of links and nodes in a concept map ranged from 10 to 

40 and the average was 21.1 (SD=7.2). 

Concept map structure understanding accuracy consists of two parts: stroke block 

extraction accuracy and structure extraction accuracy. Figure 12 shows the block 

extraction results of 45 concept maps. The average error rate for block extraction is 

4.82% (SD=0.07). The median of the error rate is 2.78%. Most of these errors are over-

segmentation errors, i.e., strokes that should belong to one block are segmented into 

several blocks. Under-segmentation errors, i.e., strokes that should belong to different 

blocks are grouped into one block, were also observed. Two factors were found to 

contribute to over-segmentation errors: distant strokes, as shown in Figure 13(a), and 

misrecognized link strokes in Figure 13(b). Under-segmentation errors are largely due to 

the closeness of node blocks, shown in Figure 13(c) and, again, misrecognized link 

blocks in Figure 13(d)- 13(e).  
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Figure 12. Accuracy of extracted blocks. 

 
(a)                                    (b)                               (c)                              (d)                             (e) 

Figure 13.  Some examples that the algorithm does not work well. 
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When node blocks and link blocks are correctly extracted, structure extraction 

accuracy is high under our algorithm – 99.5%. The errors are mainly caused by the 

incompleteness of concept maps themselves.  

Figure 14 shows extracted structures from two hand-drawn concepts maps. As seen, 

our algorithm can correctly generate concept map structures despite variations on node 

style, link style and concept map layout.  

      
(a)                                                                    (b) 

Figure 14. Examples of concept map structure understanding. 

The average time to understand one concept map was about one second. Thus, our 

algorithm can be easily integrated into real-time systems.  

6.2 Usability of manipulation techniques 

We also compared our intelligent manipulation techniques with stroke-based 

manipulation techniques. The participants were asked to change a given concept map to a 

targeted one. Two concept maps were used in the experiment. Six subjects were asked to 

modify the first concept map with our intelligent manipulation techniques and then to 

change the second concept map with stroke-based manipulation technique. The other six 

users used stroke-based method to transform the first concept map and intelligent 

manipulation techniques for the second one. We collected each subject’s task completion 

time. 

Figure 15 shows the average task completion times with two manipulation techniques. 

Our structure-based intelligent manipulation is significantly shorter than stroke-based 

manipulation technique (p<.001).     



19 
 

0
20
40
60
80

100
120
140
160

Intelligent
Manipulation

Stroke-Based
Manipulation

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(s

)

 
Figure 15. Efficiency comparison of intelligent manipulation and stroke-based manipulation.  

6.3 User feedback 

We also asked each subject to answer a post-test questionnaire to grade the accuracy, 

efficiency, comfort and enjoyment of intelligent manipulation and retrieval techniques, 

all in a 7-level Likert scale (1-very bad, 7-very good).  Subjects could also provide 

comments and suggestions in an open-ended question. 

Figure 16 exhibits the results of subjective evaluation about the intelligent 

manipulation technique and retrieval technique. As shown, our techniques were well 

received by subjects.  
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Figure 16. Users’ ratings.  

Users also gave us some useful comments on our work. Some users suggested that the 

system support automatic layout of hand-drawn concept maps. Some pointed out that the 

system should handle more complex concept maps, such as concept maps with curved or 

multi-stroke links. Some mentioned that it would be useful if the system could support 

more functions for concept maps, such as the comparison or the merging of concept maps.   

 
7. DISCUSSION AND CONCLUSION 

This paper presented an approach to understand and retrieve hand-drawn concept maps. 

By combining dynamic programming and graph partitioning, our algorithm extracts node 

blocks and link blocks of hand-drawn concept maps and builds a concept-map structure 

by relating nodes and links. Meanwhile, our algorithm supports retrieval of hand-drawn 
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concept maps based on graph matching. We implemented a system prototype, 

ConceptSketch, and integrated a set of structure-based intelligent manipulation 

techniques and a concept map retrieval method based on sketch query. The manipulation 

techniques allow users to manipulate concept maps by directly handling object blocks, 

rather than fragmental strokes. Our evaluation results show that our algorithm is effective 

and our structure-based manipulation techniques and retrieval technique are effective and 

welcomed by users.  

The contributions of our research are twofold. First, our algorithm can greatly 

enhance hand-drawn concept map tools and make such tools more intuitive and natural 

for users to create concept maps and diagrams. Our algorithm allows the construction of 

more advanced tools to manipulate concept maps. For example, by extracting structures 

of hand-drawn concept maps with our algorithm, such operations as re-organizing a 

concept map, sorting the concepts involved in a concept map, and exporting a concept to 

other formats become possible. Furthermore, with extracted meanings of nodes, 

additional metadata on the nodes can be added to the concept map to make the concept 

map more comprehensive.  For example, a search tool can be built so that users can take 

the extracted meaning of a node as a query to search through a database to identify other 

relevant concepts or to find related media (e.g., pictures or videos) to elaborate the node. 

Second, our structure-oriented method can expand the scope of application of hand-

drawn tools into other areas in which hand-drawn structures are important. Although our 

structure understanding algorithm is designed for concept maps, it can also be extended 

to recognize sketches in other domains, such as chemistry, math, physics, and 

engineering (computer-aided design), by using different reliability functions. Our method 

of combining dynamic programming and graph partitioning offers an effective approach 

to solve complex sketch recognition problems in real-time.  

Our research has some limits. First, our algorithm still produces some errors (less than 

5%) in understanding concept maps. These errors, although very small, are largely related 

to block extraction, i.e., over- and under-segmentation of blocks due to far- and short-

distant stroke blocks, as shown in Figure 13(a) and 13(c). Two kinds of strategies could 

be used to address these errors. On the one hand, more robust algorithms should be 

explored to reduce recognition errors. For example, our graph partitioning method may 

produce a structure that does not meet a user’s intent, although this rarely happens in our 

study. It would probably be solved by developing a graph partitioning algorithm 

specialized for concept maps. On the other hand, we could let users help the system 

understand concept maps. By suggesting users to draw in-block strokes closely and 
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between-block strokes distantly, we expect higher recognition accuracy could be 

achieved. Second, our algorithm cannot handle more complicated link styles, such as 

curved links shown in Figure 13(d), links with labels, and crossed links in Figure 13(e). 

To address this problem, more advanced algorithms are needed to identify curve sketches, 

to distinguish labels from links and from other nodes, and to separated crossed links.   

We will extend our research in several directions. First, we will enhance our 

algorithm by addressing the limitations discussed above, in particular supporting diverse 

link types and recognizing link labels. Second, we will integrate users’ drawing habits in 

our algorithm to improve the accuracy of concept map understanding. Furthermore, we 

will explore structure-based interaction techniques, such as automatic layout, to help 

people better organize and manage hand-drawn concept maps. In addition, our concept 

map retrieval technique is effective to search a hand-drawn concept map by using a sub 

concept map, but the search may fail when the mapping between the input query and a 

hand-drawn concept map does not satisfy the edge-preserving constraint. We will try to 

use inexact graph matching techniques in concept map retrieval algorithm. 
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Appendix 

Concept map structure understanding algorithm 

 

Step 1. Preprocessing: merging strokes to get blocks and getting the graph 

PREPROCESSING(strokes) 
foreach stroke si in strokes do 
     block  {si} 
      APPEND(blocks, block) 
foreach block bi in blocks do 
     foreach block bj in blocks do 
           // bi.type is obtained by $1 recognizer 
          if DIST(bi,bj)<thres, bi.type!=LINK and bj.type!=LINK then   
                  b’  MERGE(bi,bj) 
                  INSERT(blocks, i, b’) 
                  REMOVE(blocks, bi)    
                  REMOVE(blocks, bj) 
foreach block bi in blocks do 
      ADDNODE(graph, bi) 
foreach block bi in blocks do 
      foreach block bj in blocks do 
           weight  DIST(bi, bj) 
           if weight<weightThres then 
                  ADDEDGE(graph, bi, bj, weight) 
return graph 

 
Step 2. Graph decomposition with graph partitioning 

DECOMPOSITION(graph) 
if NUM_NODE(graph)< thres then  //Here we set thres=8  
     APPEND(subGraphs, graph)  
else 
     tempGraphs = PARTITION-BY-SHMETIS(graph)   
     foreach graph gi in tempGraphs do 
           tempSubGraphs = DECOMPOSITION(gi) 
           APPEND(subGraphs, tempSubGraphs) 
return subGraphs 

 
Step 3. Block extraction by dynamic programming 

BLOCK-EXTRACTION(graph) 
candidates  GENERATE-CANDIDATES(graph) 
V  GETNODES(graph) 
EXTRACT-RECURSIVE(candidates, optimalPath, V)  
Get newBlocks according to optimalPath 
return newBlocks 

 
GENERATE-CANDIDATES (graph) 



24 
 

foreach node vi in graph do 
     b  vi  //vi corresponds to a block in graph 
     b.value  a*DENSITYFACTOR(b)+b*DISTFACTOR(b)+c*CONTEXTFACTOR(b) 
     APPEND(candidates, b) 
     foreach node vj in graph do 
           if !HASEDGE(vi,vj) then  continue 
           b’  MERGE(vi,vj) 
           b’.value  a*DENSITYFACTOR(b’)+b*DISTFACTOR(b’)+c*CONTEXTFACTOR(b’) 
           APPEND(candidates, b’) 
           foreach node vk in graph do 
                if !HASEDGE(vi,vk) and !HASEDGE(vj,vk) then continue  
                b’’  MERGE(vi,vj,vk) 
                b’’.value a*DENSITYFACTOR(b’’)+b*DISTFACTOR(b’’)+c*CONTEXTFACTOR 
(b’’) 
               APPEND (candidates, b’’) 
return candidates 

 
EXTRACT-RECURSIVE(candidates, optimalPath, V)  

if NUM(candidates)<1 then 
    return 0 
maxValue  0 
foreach candidate V’ in candidates do 
      value1  V’.value 
      subPath1  {i |bi belongs to V’} 
      if (V-V’). hasCalculated then   
            value2  (V-V’).value 
            subPath2  (V-V’).path  
      else 
            tempCandidates  {candidates without any blocks in V’} 
            value2  EXTRACT-RECURSIVE (tempCandidates, subPath2, V-V’) 
            (V-V’).value  value2 
            (V-V’).path  subPath2 
      value  (|V’|*value1+ |V-V’|*value2)/|V|  
      if (maxValue<value) then 
             maxValue  value 
             APPEND(subPath2, subPath1) 
             optimalPath  subPath2 
             V.hasCalculated  true 
return maxValue 

 
Step 4. Concept map structure extraction 

EXTRACT-STRUCTURE(blocks, graph) 
foreach block bi in blocks do 
     ADDNODE(graph, bi) 
foreach block bi in blocks do 
     foreach block bj in blocks do 
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          if bi.type is LINK, bj.type is NODE, and  DIST(bi,bj)<thres then 
               ADDEDGE(graph, bi, bj) 

 

Step 5. Recognizing concept nodes 

RECOGNIZE-CONCEPTNODES(graph) 
foreach node vi in graph do 
      if vi.type is LINK then 
          vi.text  “” 
      else 
          textStrokes  GETTEXTSTROKES(vi) 
          vi.text  RECOGNIZE(textStrokes)  // using Microsoft Tablet PC Platform SDK 

 

 


