
Contents lists available at ScienceDirect
Journal of Visual Languages and Computing

Journal of Visual Languages and Computing 21 (2010) 209–229
1045-92

doi:10.1

� Cor

E-m

post.wi

zhangli
journal homepage: www.elsevier.com/locate/jvlc
DaisyViz: A model-based user interface toolkit for interactive
information visualization systems
Lei Ren a,�, Feng Tian b, Xiaolong (Luke) Zhang c, Lin Zhang a

a School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
b Human–Computer Interaction Lab and the Institute of Software, The Chinese Academy of Sciences, Beijing 100190, China
c College of Information Sciences and Technology, Pennsylvania State University, PA 16802, USA
a r t i c l e i n f o

Keywords:

User interface

Information visualization

Toolkit

Multiple coordinated views

Model-based interface development
6X/$ - see front matter & 2010 Elsevier Ltd.

016/j.jvlc.2010.05.003

responding author.

ail addresses: leo.renlei@gmail.com (L. Ren),

mp@gmail.com (F. Tian), lzhang@ist.psu.edu

n@buaa.edu.cn (L. Zhang).
a b s t r a c t

While information visualization technologies have transformed our life and work,

designing information visualization systems still faces challenges. Non-expert users or

end-users need toolkits that allow for rapid design and prototyping, along with

supporting unified data structures suitable for different data types (e.g., tree, network,

temporal, and multi-dimensional data), various visualization, interaction tasks. To

address these issues, we designed DaisyViz, a model-based user interface toolkit, which

enables end-users to rapidly develop domain-specific information visualization

applications without traditional programming. DaisyViz is based on a user interface

model for information (UIMI), which includes three declarative models: data model,

visualization model, and control model. In the development process, a user first

constructs a UIMI with interactive visual tools. The results of the UIMI are then parsed

to generate a prototype system automatically. In this paper, we discuss the concept of

UIMI, describe the architecture of DaisyViz, and show how to use DaisyViz to build an

information visualization system. We also present a usability study of DaisyViz we

conducted. Our findings indicate DaisyViz is an effective toolkit to help end-users build

interactive information visualization systems.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the past 20 years, an abundance of novel informa-
tion visualization (infovis) techniques have emerged to
support visual representation and interaction techniques.
Various layout algorithms have been developed to assist
the visualization and understanding of complex datasets
organized in diverse structures, such as tree, network,
multi-dimensional, and temporal data [1]. Interaction
designs provide powerful support for core user tasks, such
as those described in the visual information-seeking
mantra [6], dynamic query [2], overview+detail [3],
All rights reserved.

(X. (Luke). Zhang),
focus+context [4], panning+zooming [3], and multiple
coordinated views [5].

Infovis is generally recognized as an effective way to
help users acquire knowledge [1], although effecti-
vely applying interactive information visualization in
domain-specific problems (e.g., scientific research,
business intelligence) still faces some challenges. One of
the challenges is to provide a balance between the
flexibility required to integrate domain-specific models
into visualization tools and the simplicity needed to build
and access visualization tools. Despite the challenges
various infovis toolkits, such as PAD++ [8], Jazz [9], Piccolo
[10], Snap-Together [11], GeoVista [12], Improvise [41],
PRISMA [13], Polaris [14], XML toolkit [15], Fekete’s infovis

toolkit [16], prefuse [7], Many Eyes [17], and ComVis [18],
have been developed. Most of the toolkits support the
rapid prototype of visualization systems, the addition of
domain knowledge, and domain-specific task models.

www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2010.05.003
mailto:leo.renlei@gmail.com
mailto:post.wimp@gmail.com
mailto:lzhang@ist.psu.edu
mailto:zhanglin@buaa.edu.cn
dx.doi.org/10.1016/j.jvlc.2010.05.003


L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229210
Although the use of these toolkits involves a significant
amount of coding, which prevents most end-users for
being able to use them. On the other hand, software tools
like Spotfire (http://spotfire.tibco.com) and Tableau
(http://www.tableausoftware.com/) offer users a collec-
tion of visualization tools that end-user can directly use.
These software packages are based on pre-defined models
accounting for basic user needs and task requirements.
Therefore, plugging in new domain-specific knowledge to
these customize visualization tools is often not supported.
As visualization tools become more important to data
analysis and knowledge exploration in different domains,
at different levels of analysis, and by people with different
technical skills, this challenge cannot be ignored. This
problem needs to be addressed so that visualization tools
and systems are easy built by end-users, and are
customizable with user defined domain-specific models,
data, and user task.

One approach to tackle this problem is to use model-
based design for interactive systems [19]. This approach
allows a designer to build a declarative interface model
that specifies the high-level domain requirements and
then use the model to guide the interface development
process. This model-based design paradigm offers a
number of benefits, including user-centered development
cycle, centralized user interface specification, comprehen-
sive design tools for interactive, and automated develop-
ment, and reuse of user interface designs [19]. For end-
users, the benefits of this model-based approach are
valuable, because they can build domain-specific infovis

applications by crafting a model on user interface (UI) and
interaction tools, rather than writing code and algorithms
to create UI and interaction tools from scratch.

While this model-based approach allows end-users to
focus on the primary tasks of exploring the data through
visualization, end-users may still face a challenge in
developing a model to accurately describe the relation-
ship between data, visualization tools, and user tasks. For
example, when analyzing the cause of the bottleneck in a
product line with visualization tools, users can use
coordinated, multiple views [5] to analyze several facets
of the product line: the elements in the product line, the
overall relationship of all components in the product line
(e.g., elements, machines, transportation vehicles, and
personnel), the task hierarchy that is related to the
bottleneck, and the process and progress of individual
tasks. A possible visualization-based solution to this
analytics task is to have a set of visualization tools for
different types of data, such as a multi-dimensional
visualization tool to illustrate the different attributes of
individual elements, a network visualization tool to
present the relationship among all components of the
product line, a tree view to visualize the task hierarchy,
and a timeline to map the process and progress of tasks.
By linking information artifacts in these different visua-
lization tools, users can examine what tasks have been
delayed and what the consequences of the delay might be.
However, to use a model-based approach to design
visualization tools for this task, users need to develop a
model that describes not only what visualization tools
to use and what datasets to analyze, but also what
information facets should be mapped to individual tools,
what data sources these facets correspond to, what
relationships all the facets of interest have, etc. Such a
complicated model could be difficult for users.

To address this challenge users face when using the
model-based approach to design visualization systems,
we developed DaisyViz, a model-based user interfaces
toolkit for the development of interactive infovis systems
with multiple coordinated views. The key features of
DaisyViz include the following:
�
 unified data models suitable for multiple data types
and multiple coordinated views;

�
 diverse and extensible layout algorithms for tree,

graph, multi-dimensional, and temporal data types;

�
 rich interactive tools (e.g., dynamic query, overview

+detail, panning+zooming, focus+context, and multiple
coordinated views) to support diverse infovis tasks; and

�
 model-based interface development for end-users.

The goal of DaisyViz is to simplify the design and
implement of infovis applications. DaisyViz is based on an
interface model called UIMI consisting of three declarative
models—data model, visualization model, and control
model. End-users construct interface models and then
generate profiles that are parsed by DaisyViz to auto-
matically generate an interactive infovis application.

The paper is structured as follows. Section 2 reviews
related work. Section 3 defines the UIMI model, and Section
4 describes the architecture of DaisyViz. In Section 5, we
discuss a novel visualization technique, DOI-Wave, in
DaisyViz and its integration into DaisyViz. Then, the paper
presents an example of using DaisyViz to build a visualiza-
tion data system for data analysis in a manufacturer. After
the introduction of a usability study on the use of the
DaisyViz in Section 7, the paper concludes with future work.

2. Related work

Over the last few decades, a massive amount of
research has been done on infovis to explore novel visual
representations of data, to design new interaction tech-
niques for the manipulation of information artifacts to
reveal underlying knowledge, to build new toolkits for the
creation of infovis applications, etc. Some examples of
popular visual representation designs include tree visua-
lizations (e.g., TreeMaps [20], Cone Trees [21], Hyperbolic
trees [22], SpaceTrees [23], DOITrees [24], InterRing [25],
and CirclePacking [26]), graph visualization (e.g.,
Clustered Graph [27], Force-Directed Graph [28], and
Radial Graph [29]), multi-dimensional visualizations (e.g.,
Scatterplots [30] and Parallel coordinates [31]), and
temporal visualizations (e.g., Theme River [32], Circle
View [33], and TimeWhell [34]). Advances were also made
on interaction techniques to facilitate user navigation and
exploration of visual information, including dynamic
query [2], overview+detail [3], focus+context [4], pan-
ning+zooming [3], and multiple coordinated views [5].

Some infovis tools have been developed especially for
the visualization of a given data type, such as static graph

http://spotfire.tibco.com
http://www.tableausoftware.com/


L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229 211
visualization (e.g., Graphviz [35] and GVF [36]) and multi-
dimensional visualization (e.g., Polaris [14]). These tools
cannot cover all seven types of data [6], especially the
popular data types of tree, graph, multi-dimensional, and
temporal data. Facing complex information datasets, users
need to visualize and explore many facets of the
information conceptual entity to gain insight into each
facet and, most importantly, to understand the hidden
relationships among the facets. Thus, it is important to
integrate these type-specific visualization tools.

Multiple coordinated views are an effective design to
support interactive visual analysis by combining two or
more coordinated visualization tools. Examples of such
design include Snap-Together [11], GeoVista [12],
Improvise [41], PRISMA [13], and ComVis [18]. These
tools, however, largely focus only on implementing the
coordination mechanisms, and provide less support for
the combination of a wide range of visualization and
interaction techniques, such as the visualizations for tree,
graph, multi-dimensional, and temporal data, and the
interaction techniques for overview, zoom, filter, and
details-on-demand. DaisyViz, in contrast, can provide
generic data models suitable for different data types in
multiple coordinated views, and can support multiple
common tasks that extend Shneiderman’s taxonomy [6]
in each view.

Various toolkits, such as XML toolkit [15], Fekete’s
InfoVis toolkit [16], prefuse [7], Many Eyes [17], JViews of
ILOG [46], and Tom Sawyer Perspective [47], have been
developed to simplify the design and implementation of
infovis applications. These tools often provide generic data
models to cover a variety of data types and visualization
components that encapsulate algorithms into widgets.
XML toolkit, based on the standard Java data structures
(e.g., Treemodel), is a package of infovis algorithms, rather
than a toolkit for end-users. Although Fekete’s InforVis
toolkit provides a library of existing visualization widgets
to support often-seen layout algorithms and interaction
techniques (e.g., focus+context and dynamic query), it
lacks the flexibility and reusable components for con-
structing novel infovis applications [7]. Prefuse [7], in
comparison to Fekete’s infovis toolkit, offers a simpler way
to develop visualization applications by encapsulating the
details of layout algorithms and interactive tools, and
allows users to build systems by assembling pre-devel-
oped program blocks. However, it does not provide a
design tool that includes GUI for end-users, so users still
have to write codes according to predefined standards
when customizing complex domain-specific applications.
The goal of Many Eyes [17] is to support collaboration for
visualization at a larger scale (e.g., the whole Internet).
This system pays more attention to creating online
visualizations tools for end-users. Its mechanisms for
data models, visualization and interaction techniques are
relatively simple, so it can hardly meet the demands of
interactive infovis applications for complex domain-
specific applications. The commercial systems, such as
ILOG JViews Diagrammer [46] and Tom Sawyer Perspec-
tive [47], are used to help end-users to build web and
desktop infovis applications. While ILOG JViews Diagram-
mer is a powerful tool that provides a broad range of
modules for data integration, layout algorithms, render-
ing, and application deployment. It focuses more on the
presentation of complex visual objects, such as graphs,
rather than complicated user interaction activities. For
example, the tool can support such activities as object
selection, zooming, and panning, but more advanced
user interaction techniques like dynamic query and
focus+context are not included. Tom Sawyer Perspective
is a tool to quickly and easily translate data into different
types of synchronized views, but its support for diverse
visualization layouts as well as complex interaction
techniques is weak. In contrast to current solutions
mentioned above, DaisyViz can provide a model-based
design toolkit for end-users to simply create domain-
specific interactive infovis applications that support uni-
fied data models and a wide range of commonly seen
visualization tools and interaction techniques in an
environment of multiple coordinated views.

3. UIMI: a user interface model for information
visualization

DaisyViz is based on the idea of model-based interface
development [19], which uses a declarative model of user
interfaces to drive the development process. A user
interface model abstracts the features of a user interface
and represents all the relevant aspects of the user
interface in a formal language. The user interface model,
the core of development process, is then parsed according
to knowledge bases to generate applications. From the
perspective of end-users, their only design concern is to
construct an interface model.

Fig. 1 shows our user interface model for Infovis (UIMI).
In this model, users can construct a model by simply
answering several questions:
�
 What facets of the target information should be
visualized?

�
 What data source should each facet be linked to and

how the facets are related to each other?

�
 What layout algorithm should be used to visualize

each facet?

�
 What interactive techniques should be used for each

facet (i.e., view) and for what infovis tasks?

The answers to these questions are then used to
construct three declarative models of data, visualization,
and control.

3.1. Data model

The data model in UIMI is to describe the unified data
structures of multiple relevant facets of the target
information. We use relational data schemas to manage
data and to define the relationships between data
attributes. The target data can be analyzed from different
information facets. For a facet, data can be organized into
tables in which each row corresponds to a basic data item
and each column represents an attribute of data [37].
Foreign keys of the tables can describe the relationships



What facets of the target 
information should be 

visualized?

What data source should 
each facet be linked to 
and what relationships 

these facets have?

What layout algorithm 
should be used to 

visualize each facet?

What interactive 
techniques should be 

used for each facet and 
for what infovis tasks?

Data Model

InfoFacetSet

DataItemSet

DataItemRelationSet

InfoFacet
R

elationSet
Visualization Model

ViewContainerSet

VisualStructure

SpacialSubstrate

LayoutAlgorithm

GraphicalMark
Mapping

V
iew

C
ontainer

R
elationSet

Control Model
DirectManipulationTaskControlSet

DirectManipulationTask

DirectManipulationEvent

InDirectManipulationTaskControlSet

DynamicQueryControl

KeywordSearchControl

FilterbyLegendsControl

Fig. 1. The conceptual model of UIMI.

L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229212
among the facets. Take the aforementioned example of
bottleneck analysis in a product line that involves four
information facets: product element, overall relationship
among all components related to the product, task
hierarchy, and the process and progress of tasks. The
multi-dimensional data of product elements can be
represented by a multi-column table, in which each data
dimension of a product element is mapped to a column.
The tree data of task hierarchy and graph data of the
relationships among all components related to the
product can be represented with two tables: one to
specify individual nodes (tasks or components) and the
other to define the relationships among nodes. The
temporal data of the task process and the progress can
also be managed by a table, in which each column is a
time point and foreign keys can tie the data to the tables
of product element and task hierarchy.

To formalize the representation of data, data facets,
and relationship among facets with relational data
schemas, we developed the following definitions.
Definition 1. A DataItem DI= oDIID, Attribute1, Attribu-

te2,y, Attributen4 . DIID is the ID of a data item.
Attributei= oAttrNamei, MetaDatai4 is a property of DI,
where AttrNamei is the property name of Attributei, and
MetaDatai is the metadata type of nominal, ordinal, and
quantitative [1]. Here interval data are treated as
quantitative data.

Definition 2. A DataItemRelation DIR= oSourceDIID,
TargetDIID, Direction4 where SourceDIID and TargetDIID

are the DIID of two data items of a link. DirectionA
{direct,undirect}.

Definition 3. An InfoFacet IF= o IFID, DISet, DIRSet,
DataSource4 is a facet of the target data. IFID is the ID
of the facet of the target data. DISet is a set of DI. DIRSet is
a set of DIR. DataSource is a pointer to a data source, which
could be a formatted text file, an XML document, or a
relational database. For a formatted text file or an XML
documents, DataSource would be the path. For a relational
database, DataSource would be the connection strings
including server, database, username, password, etc.

Definition 4. An InfoFacetRelation IFR=oSourceIFID,
TargetIFID, KeyAttri, Direction4 is a relationship between
two facets. SourceIFID and TargetIFID are IDs of two
relevant facets. Let SourceAttriSet be the set of attributes
of data items in facet SourceIFID and TargetAttriSet be the
set of attributes of data items in facet TargetIFID. Then,
KeyAttri is defined as KeyAttriASourceAttriSet\Target

AttriSet. DirectionA{direct, non-direct} defines whether
the relationship is directional or non-directional between
the source and target facets.



L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229 213
Definition 5. Data= o IFSet, IFRSet4 . IFSet is a set of
facets of the target data, and IFRSet is a set of relationships
among the facets.

3.2. Visualization model

The visualization model in UIMI defines the visual
representations of data in user interfaces. This model
concerns two primary issues: coordinated views and
visual structure in each view. Coordinated views are a
set of views that will be offered. Individual views are
coordinated by sharing common data attributes. Each
view defines a visual structure that describes layout
algorithms, spatial substrate, and graphical mark map-
pings [1]. Here, spatial substrate specifies a set of axes
that are involved in a view and data attributes that are
mapped to individual axes. Graphical mark mappings
express how the attributes of data should be encoded
with the attributes of graphical marks (e.g., shape, color,
size, orientation, texture, etc.). From the perspective of
end-users, this model defines how many views should be
included in a user interface, what visualization technique
should be used in each view, and how the information is
visualized. The visualization model contains the following
formal definitions.

Definition 6. An Axis=oAxisID, AxisType, DIMappingAttri,
ValueRang4 . AxisID is the ID of the axis. AxisTypeA
{NoAxis, NominalAxis, OrdinalAxis, QuantityAxis} is the type
of the axis. DIMappingAttri is the encoded attribute of data
items. ValueRange is the predefined range of the axis.

Definition 7. A SpatialSubstrate is a set of axes.

Definition 8. A GraphicalMarkMapping GMM= oLabel-

MappingAttri, ShapeMappingAttri, ColorMappingAttri, Size-

MappingAttri, OrientationMappingAttri, TextureMapping

Attri4 where LabelMappingAttri, ShapeMappingAttri, Col-

orMappingAttri, SizeMappingAttri, OrientationMappingAttri

and TextureMappingAttri are the attributes of data items
encoded with the attributes of graphical marks, including
label, shape, color, size, orientation, and texture.

Definition 9. A VisualStructure VS= oVSID, Layout

Algorithm, SpatialSubstrate, GMM4 . VSID is the ID of VS,
and LayoutAlgorithm is the name of layout algorithm.
LayoutAlgorithmA{TreeMaps, RadialGraph, ParallelCoordi-
nates, ScatterPlot, DOITrees, 3DBarChart, y}. The set of
LayoutAlgorithm can be extended when a new layout
algorithm is added.

Definition 10. A ViewContainer VC= oVCID, IFID,
VSID4 . VCID is the ID of a view container, IFID is the ID
of a facet that will be visualized in this view container,
and VSID is the ID of the visual structure in this view
container.

Definition 11. A ViewContainerRelation VCR= oVCRID,
SourceVCID, TargetVCID, KeyAttri4 where SourceVCID and
TargetVCID are the IDs of two coordinated views with the
common attribute KeyAttri of data items.
Definition 12. Visualization= oVCSet, VCRSet4 where
VCSet is a set of view containers, and VCRSet is a set of
VCRs.
3.3. Control model

The control model in UIMI describes the infovis tasks
and interaction techniques used in each view. Based on
the task taxonomy by Shneiderman [6] and new task
requirements seen in recent toolkits [7–18], we developed
a more detailed taxonomy for infovis tasks, which includes
overview of multiple views, overview of visualization in a
view, pan, zoom, filter by data attributes (i.e., dynamic
query), filter by legends, keyword search, detail tooltip
(i.e., detail-on-demand), and coordination (e.g., brushing-
and-linking and drill-down). For the tasks of coordination,
brushing-and-linking refers to a technique in which when
an item is selected in one view highlights, the correspond-
ing item(s) in another view will be highlighted; drill-
down is a tool that loads related items in a view when
they are selected in another [11].

The control model allows users to define what tasks
should be involved and how tasks should be executed.
They can specify the tasks needed by the requirements of
applications and the concrete control model for every task
that has been chosen. The interaction controls can be
divided into two categories: direct manipulation and
indirect manipulation. Direct manipulation is mainly used
for overview of multiple views, overview of visualization
in a view, pan, zoom, detail tooltip, and coordination. For
the direct manipulation, users can describe which inter-
action events should be applied to achieve a task based on
a set of predefined events (e.g., double-click on the blank
area in a view to overview the visualization, or drag and
drop a graphical node from one view to another to
establish the coordination between two views). Indirect
manipulation involves the use of control tools, such as
sliders, text boxes, and legends, and is targeted by
dynamic query, keyword search, or filter by legends.
When defining indirect manipulation tools, users need to
specify what data attributes should be mapped to these
tools.

The control model includes the following components:

Definition 13. A DirectManipulationEventSet DMES=
oOnItemLeftClick, OnItemLeftDoubleClick, OnItemRight-
Click, OnItemRightDoubleClick, OnItemHover, OnItem-
LeftDragDrop, OnItemRightDragDrop, OnViewLeftClick,
OnViewLeftDoubleClick, OnViewRightClick, OnViewRight-
DoubleClick, OnViewHover, OnViewLeftDragDrop, OnVie-
wRightDragDrop,y4 . Here, some usual interaction
events are predefined for users to choose to realize direct
manipulation.

Definition 14. A DirectManipulationTaskControl DMTC=
oDMTask, DME4 . DMTaskA{OverviewMultipleViews,
OverviewVisualization, Pan, Zoom, DetailTooltip, Brush-
ing-and-LinkingCoordination, DrillDownCoordination,y}
is one of the tasks using direct manipulation. DMEADMES

is the interaction event for DMTask.



L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229214
Definition 15. A DynamicQueryControl DQC= oDQCID,
VCID, DIAttri, ValueRange4 . DQCID is the ID of a dynamic
query slider. VCID is the view container that contains the
slider. DIAttri is the attribute of data items that will be
used in dynamic query. ValueRange is a predefined range
of the slider.

Definition 16. A KeywordSearchControl KSC= oKSCID,
VCID, DIAttri4 . KSCID is the ID of a text box for keyword
search. VCID is the view container for the text box. DIAttri

is the attribute of data items that will be used to search for
items in a view.

Definition 17. A FilterbyLegendsControl FLC= oFLCID,
VCID, GraphicalMarkAttribute4 . FLCID is the ID of a legend
control. VCID is the view container where the legend
Mappin
Knowledge

Mapping
Parser

DaisyViz Modeler XML Editor

JDBC SAX JAVA

UIMI Profiles 
Database

IIVM 
ProfileIIVM 
ProfileIIVM 
ProfileIIVM 

Profile
UIMI
Profile

UIMI Profile 
Builder

Data Model 
Builder

Visualization
Model Builder

Control Model 
Builder

VisualRepresentation
Lib

RepresentationLib

Views

ViewContainer
Relation

Visual
Structure

Spatial
Substrate

Graphical
Mark

View
Container

MappingLib

ViewContainerLayout

VisualStructureLayout

AxisMap

GraphicalMarkAttribute
ContinuousMap

GraphicalMarkAttribute
DiscreteMap

DataAccessLib

DataXML
Reader

DataSQL
Reader

DataType
Adapter

Data
Query

DataTXT
Reader

AccessLib

Data
Item

InfoFacet

AttributeColumn

Data

InfoFacet
Relation

DataItem
Relation

DataLib

DataXML
Writer

DaisyViz Li

DaisyViz Core C

DaisyViz To

Java APIs

Fig. 2. Architecture
control resides. GraphicalMarkAttribute is the attribute of
graphical marks that will be used to filter items in a view.

Definition 18. Control= oDirectManipulationTaskControl-

Set, IndirectManipulationTaskControlSet4 . DirectManipula-

tionTaskControlSet is a set of controls using direct
manipulation to support related tasks. IndirectManipula-

tionTaskControlSet= oDQCSet, KSCSet, FLCSet4 is a set of
controls using indirect manipulation to support related
tasks.

4. Architecture of DaisyViz

4.1. Overview

Fig. 2 shows the architecture of DaisyViz. DaisyViz is
composed of four main parts: DaisyViz tools, DaisyViz
g
Base

 

DaisyViz Runner

 Graphical Editor Framework … …

RenderLib

ViewContainer
Render

Axis
Render

Dynamic
QueryRender

ViewContainer
RelationRender

Node
Render

Legend
Render

Edge
Render

Lable
Render

VisualStructure
Render

GUI
Render

Runtime
Framework

Runtime Controller

Data Access 
Controller

Visual 
Representation

Controller

Interaction
Controller

InteractionEvent
Lisener

Overview
Control

PanControl

Interaction
ContextControl

Distortion
Control

DetailToolTip
Control

KeywordSearch
Control

LegendFilter
Control

ZoomControl

DynamicQuery
Control

ControlLib

Coordination
Control

HistoryControl

braries

omponents

ols

of DaisyViz.



L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229 215
core components, DaisyViz libraries, and Java APIs. Java
APIs include such components as JDBC, SAX, and
Graphical Editor Framework, and provide the underlying
support for all other parts. DaisyViz libraries, as the
foundation of DaisyViz core components, cover the
libraries used for data structures of information, data
access, visual representation structures, visual mapping,
graphical element rendering, and interaction events
controlling.

DaisyViz core components support the main develop-
ment process. The UIMI profile builder is responsible for
UIMI modeling based on the requirements of the domain
applications and then constructing UIMI profiles. The
mapping parser, built on mapping knowledge bases,
translates the declarative language in a UIMI profile into
runtime parameters needed by the system runtime
framework. The runtime controller, the master of runtime
systems, controls the runtime mechanisms such as data
access, visual representation mapping, graphics rendering,
and interaction event processing.

DaisyViz provides end-users with tools to design and
run domain-specific applications. The DaisyViz modeler
can help users build UIMI models and construct profiles.
The DaisyViz runner, a runtime tool, can generate
applications through parsing UIMI profiles and thus
support user’s visual analysis. End-users can modify a
UIMI profile with an XML editor.
4.2. DaisyViz core components

DaisyViz core components can be broken down into six
parts: a UIMI profile builder, a UIMI profiles database, a
mapping parser, a mapping knowledge base, a runtime
controller, and a runtime framework.

A DaisyViz development process starts with UIMI
modeling. The requirements of domain-specific applica-
tions are formalized to a UIMI profile. The UIMI profile
builder includes three model builders to construct the
data model, the visualization model, and the control
model, as well as their profiles. Because of the wide
acceptance of XML as the format for information ex-
changing, the UIMI profiles are built in XML schemas and
can be edited by any XML editing tool. XML-based profiles
are stored in a UIMI profile database. The profiles in the
database can serve as templates for reuse and incremental
development of domain-specific applications.

Because UIMI is a declarative model, it needs to be
translated into a program language for the runtime
system. The mapping parser, which is built on the
mapping knowledge base, is responsible for the transla-
tion. The reasoning rules of knowledge are represented by
Predicate Logic [38], which performs the reasoning based
on the declarative profiles. The results of the mapping
parser are the parameters that are essential for the
runtime system.

Once the UIMI profiles are parsed, the runtime
controller can embed the parameters generated by the
mapping parser into the runtime system framework. As
illustrated in Fig. 3, to run an application system, the
runtime framework requires three types of parameters
that are generated from the data model, the visuali-
zation model, and the control model, respectively.
The parameters from the data model are used to access
data sources and generate data structures. The parameters
from the visualization model support the mapping
process from data to visual representations. The
parameters from the control model mainly handle the
responses to interaction events and execute infovis tasks.

The runtime framework has five function modules and
four modules related to data processing (Fig. 3). Five
function modules include a module for data access, a
module to map visual representations, a rendering
module, a module of interaction event control, and
a module for meta-task control. Four modules that
concern data are a data module to manage data acquired
from data sources, a visual representation module to
manage view graphs, a graphical element module to
handle rendered graphical objects, and an interaction
context module to respond user actions.

All runtime processes are built on these nine modules.
A runtime process starts with an interaction event
triggered by a user’s interaction with the graphical
elements in the user interface. Based on the interaction
context module, where current interaction state (e.g.,
selected items and search results) are recorded, the
interaction event is recognized by the interaction event
control module.

Interaction events here are classified into two types of
tasks. The first type of tasks only concerns the transfor-
mation of graphical elements, such as overview, panning,
zooming, and filtering by legends, without the need for
data access. The second type of tasks (e.g., dynamic
queries, keyword search, and view coordination) is tightly
coupled with datasets. These two types of tasks are
processed by the meta-task control module in different
ways. For tasks only concerning graphic transformation,
the meta-task module performs graphical operations on
the graphical elements stored in the interaction context
module and then renders them to the interface. For tasks
requiring access to data sources, the meta-task control
module communicates with the data access module for
data query and update.

To produce visual results, raw data must be converted
into structured data and then mapped to visual repre-
sentations that can be rendered. The data access module
connects to the data sources and formats the raw data
into structures that can be processed by the data module
and the meta-task control module. Then, the visual
representation mapping module establishes the corre-
spondences between data structures (e.g., facets, data
items, attributes) in the data module and view structures
(e.g., view types, spatial substrate, and graphical marks) in
the visual representation module. These view structures
are drawn on the interface by the render module.
4.3. DaisyViz libraries

The above DaisyViz core components rely on DaisyViz
libraries. These libraries facilitate the development of
infovis applications by providing the components



Data Access

Visual
Representation

Mapping

Render

Graphical
Elements

Interaction
Event

Control

Interaction
Context

Data
Model

of
UIMI

Visuali
-zation 
Model

of
UIMI

Control
Model

of
UIMI

RenderLib

MetaTask
Control

DataAccess
Lib

ControlLib

DaisyViz
Libraries

User

Data Source 

VisualRepres
entationLib

…
…

InfoFacet InfoFacet
Relation

DataNode DataNode
Relation

Data

Attibute
Column

… …

Runtime FrameworkUIMI

…
…

View
Container

ViewContainer
Relation

Visual
Structure

Spatial
Substrate

Graphical
Marks

Visual Representation

… …

Fig. 3. Runtime framework of DaisyViz. (Squares: data Modules; ellipses: function modules.)

L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229216
frequently used. Four libraries are included in DaisyViz:
Data Access Lib, Visual Representation Lib, Render Lib, and
Control Lib, as illustrated in Fig. 2.

4.3.1. Data access lib

To support data access and to define the unified
underlying data structures, DaisyViz has two sub-libraries
in Data Access Lib: Access Lib and Data Lib. Access Lib

provides components (DataTXTReader, DataXMLReader,
and DataSQLReader) to access and format data from text
files, XML documents, and relational database; a compo-
nent (DataXMLWriter) to construct XML profiles; and a
component (DataTypeAdapter) to transform UIMI data
types, i.e., nominal, ordinal and quantity, to the variable
types in program language (i.e., string, float, etc.). Data Lib

defines unified data structures for tree, graph, multi-
dimensional, and temporal data by providing such basic
components as InfoFacet, InfoFacetRelation, DataItem,
DataNodeRelation, and AttributeColumn.

4.3.2. Visual representation lib

To aid visual mappings and to provide generic data
structures for visual representations, Visual Representation
Lib includes two sub-libraries: MappingLib and Represen-

tationLib. The MappingLib has five components. Visual-

StructureLayout hosts commonly seen layout algorithms
(e.g., TreeMaps [20], DOITrees [24], CirclePacking [26],
Force-Directed Graph [28], Radial Graph [29], scatterplots
[30], Parallel coordinates [31], 3D bar charts) as well as
our new designs, such as DOI-Wave (see Section 5).
AxisMap generates spatial substrate and encapsulates the
mapping functions for different axis types. GraphicalMar-

kAttributeContinuousMap and GraphicalMarkAttributeDis-

creteMap are used for assigning color, shape, size, and
other attributes to graphical marks based on a collection
of mapping functions. RepresentationLib organizes graphi-
cal elements to the generic data structures by providing
components for defining views, visual structure, spatial
substrate, graphical marks, etc.

4.3.3. Render lib

This library is to simplify the drawing of all kinds
of graphical elements displayed in interfaces. View

ContainerRender and ViewContainerRelationRender are
used to draw the views and the links between related
views. VisualStructureRender, AxisRender, NodeRender,



L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229 217
EdgeRender, and LabelRender mainly serve for the visua-
lization in a view where axes, labels and graphical marks
are drawn. DynamicQuderyRender is used for dynamic
query sliders drawing. LegendRender assists the visualiza-
tion of legends. GUIRender includes some traditional GUI
components, such as text box, and dropdown box. The
design of Reder Lib is based on the Factories approach [39],
which can be extended and modified by users.
4.3.4. Control lib

To simplify the customization of the interaction tasks
of infovis, Control Lib provides components of those
interaction events that are frequently used in infovis,
and encapsulates commonly seen infovis tasks into
components. InteractionEventListener gives a list of events
for users to choose, such as OnItemLeftClick(), an event
qfor left-clicking a graphical item. Other components
like OverviewControl, PanControl, ZoomControl, Dynamic-

QueryControl, LegendFilterControl, KeywordSearchControl,
DetailTooltipControl, DistortionControl, Brushing-and-Lin-

kingCoordinationControl, and DrillDownCoordinationControl

can each support a specific infovis task. InteractionCon-

textControl is used to manage interaction states, such as
currently selected items and search results, which offers
input parameters for the encapsulated components for
task control.
5. DOI-wave: a novel visualization technique in DaisyViz

Visual representations in DaisyVis can be extended. In
addition to commonly seen visualization layout algo-
rithms, such as TreeMaps [20], DOITrees [24], CirclePack-
ing [26], Force-Directed Graph [28], and Radial Graph
[29], our current version of DaisyViz also includes a new
design for network data visualization, DOI-Wave. In this
section, we introduce this new design and use it as an
example about how new layout algorithms can be
integrated into DaisyViz.
5.1. DOI-wave overview

DOI-Wave is a novel focus+context visualization
technique for interactive exploration of networks and
data. This technique dynamically adjusts the layout of the
network based on a user’s estimated degree-of-interest
(DOI). In graph visualization, it is important to allow
network analysts to explore a node’s degree of connectiv-
ity and network distance from other nodes [29]. Several
approaches have been studied. One group of visualization
techniques use the paradigm of clustered graph naviga-
tion to support network exploration [27,28,42]. However,
this paradigm has its limitations in practice because it
assumes that the graph of interest has a hierarchical
structure, which is suitable for clustering. Another group
of designs transform a graph into a tree (e.g., spanning
tree) by using a fast algorithm and support user naviga-
tion through this resulting tree rather than the original
graph [43,44]. Because of the transformation of data from
a graph to a tree, some links among nodes are hidden and
the change of the graph structure cannot be faithfully
represented.

A third approach applies the focus+context paradigm
[4] and visualizes a graph. Such focus+context techniques
consider a user’s attention in network analysis and
navigation, and dynamically allocate display resources
by calculating the user’s degree-of-interest (DOI) [40]. In
general, designs falling into this category can be further
divided into two classes: designs with geometric
distortion (e.g., graph fisheye [45]) and designs with-
out distortion (e.g., Radial Graph [29]). Designs
with geometric distortion are difficult to use. In parti-
cular, comprehending the hierarchical relationships of a
complex graph in a distorted view is a challenge because
of the cluttered nodes and edges, as a result of the
distortion. Techniques without distortion, on the other
hand, cannot deal with large graphs well, because
algorithms in this class often follow a design model that
put nodes in centric rings. For large graphs, this layout is
not efficient and is difficult to explore nodes in every
directions, all 3601.

Our DOI-wave design, based on attention-reactive user
interface [40], follows a hierarchically clustered graph
paradigm, in which the view of a graph is dynamically
determined by the selection of a focused node to which
the user pays the most attention. The layout algorithm
changes the view of a graph dynamically and animatedly
when the focused node is shifted and the DOI values of
each node in the graph are changed. By hierarchically
clustering nodes, our DOI-Wave design can dynamically
adjust the number of nodes in the visualization and allow
the display of the graph to be easily adapted to available
display space.

Fig. 4 is an example of using our DOI-wave approach to
visualize a social network. A user can easily explore the
social network by shifting the focus from one person to
another in the social network. Fig. 4a shows a view in
which the user selected a person called ‘‘Otomi’’ as the
focus to examine his social relationships. When the user
discovered that one of his friends, ‘‘Ben’’, had many
friends and deserved more attention. The user then
selected ‘‘Ben’’ as the new focus and got a new shown in
Fig. 6b.

In comparison, Fig. 5 shows the views of the same
social network by an ASK-Graphview [42] (Fig. 5a), which
uses force-directed clustered techniques, and Radial
Graph (Fig. 5b). As shown in Fig. 5a, the relationships
between two actors within a cluster can be understood
easily, especially when the focused actor is the center
node of a cluster, such as ‘‘Ben’’. However, for those actors
who do not apparently belong to any clusters, such as
‘‘Otomi’’, it is difficult to comprehend their relationships
with and network distances to others. In the view of
Fig. 5b, exploring the network has to be conducted in all
direction around the rings, especially when actors of
interest are far away from each other in network distance,
such as ‘‘Otomi’’ who is at the center and ‘‘Sam’’ who is in
the outer ring.

The DOI-wave design offer some advantages over other
methods. The layout of the DOI-wave differs from Radial
Graph in that users can understand the degree of



Fig. 4. DOI-wave tool for social network exploration: (a) DOI-wave Layout with actor ‘‘Otomi’’ as focus and (b) DOI-wave layout as focus shifted to

actor ‘‘Ben’’.

L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229218



Fig. 5. ASK-GraphView and Radial Graph for social network exploration: (a) ASK-Graphview and (b) Radial Graph.

L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229 219
connectivity of the focused node and its network distance
to other nodes in a single direction in the DOI-Wave,
rather than exploring nodes in every directions, all 3601.
In addition, the adaptive visualization mechanism in the
DOI-wave can achieve more effective display space
utilization because the layout takes advantage of the
rectangular space rather than the circular space used by
Radial Graph.



L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229220
5.2. DOI model

Here we will give the definitions of networks that can
be used in the DOI-wave algorithm.

Definition 19. A DWNode is a 7-column table oNodeID,
DOI, CenterPoint, NodeWidth, NodeHeight, Level, NodeList,
Text, Flag4 . NodeID is the ID of a node, DOI is the value of
degree-of-interest. CenterPoint is the centerpoint of the
bounding box of the node. NodeWidth and NodeHeight are
the width and the height of the bounding box. Level is the
layer level in the clustered hierarchy the node belongs to.
NodeList is the set of neighbor nodes’ IDs which are linked
to the node. Text is the label. Flag is a Boolean flag with the
initial value false.

Definition 20. An DWEdge is a 4-column table oEdgeID,
StartNode, EndNode, Text4 , where EdgeID is the ID of an
edge, StartNode and EndNode are the NodeID of two
endpoint nodes of the edge, and Text is the label.

Definition 21. A DWNetwork is a 2-column table
oDWNodeSet, DWEdgeSet4 , where DWNodeSet is a set
of nodes, and DWEdgeSet is a set of edges.

Let N be a DWNetwork consisting of n nodes. Let Ndf be
the focus node users have selected. Let Ndi be any node in
N, NdfaNdi. Let Tr be a spanning tree of N with Ndf as the
root node. Let Ndp be the parent node of Ndi in Tr. A simple
DOI function is defined as follows:

DOIðNdiÞ ¼DOIðNdÞ�C ð1Þ

In the DOI function, C is a constant. Then, the DOI
computing algorithm can be described as follows:

Step 1: Initiate DOI value of the focus node, DOI(Ndf)=n�C.

Let the Flag of Ndp be true, Ndp.Flag=true.

Step 2: Traverse N with breadth first order and get the
node set NodeList of Ndf.
Fig. 6. DOI-wav
Step 3: For any NdjANodeList, if the Flag of Ndj is false,
DOI(Ndj)=DOI(Ndf)—C. Then let the Flag of Ndj

be true, Ndj.Flag=true.
Step 4: For any NdjANodeList, let Ndj be the new Ndf.

Then go to step 2.

5.3. DOI-wave layout

Fig. 6 shows the layout method when a node is
selected as the focus of attention. Let the left-top point
of the rectangle display area be the origin of a two-
dimensional coordinate system, the horizontal axis be the
X-axis, and vertical axis be the Y-axis. Let w be the width
of the rectangle in the X-axis, and h, the height in the
Y-axis. For Ndf and N, the DOI-wave layout algorithm is
described as follows:

Step 1: For each node NdiANodeSet, compute DOI(Ndi)
by the DOI computing algorithm.

Step 2: For each node NdiaNdf, sort all the nodes in
descending order according to DOI(Ndi). Then
put them into sets SL0, SL01, SL2,y,SLm, where
for NdjASLi, DOI(Ndi)=(n� i�1)�a.

Step 3: Put Ndf at the point (a+NodeWidth (Ndf), h/2).
Step 4: For the nodes in each set SLk (k=0 to m), place

them evenly in the arc Lk. The equation of Lk is
(x–s�k�d)2+(y�h/2)2=R2, where t ryr h�2t.
If k=0, draw each edge between Ndf and Ndi

where NdiALk. If ka0, draw each edge between
Ndi and Ndj, where NdiALk�1 and NdjALk.

Since the display region is often like a rectangle, the
focus node is moved to the middle on one side, and the
other nodes are dynamically re-arranged on a serial of
arcs. Each node lies on an arc according to its DOI value.
Immediate neighbors of the focus, on the nearest arc, have
the maximum DOI values, and their neighbors with the
minor DOI values lie on the second nearest arc, etc. The
e layout.



Fig. 7. Dynamically adaptive layouts to DOI-wave.

L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229 221
layout can be adaptive dynamically to the display
space, i.e., the radius R (see Fig. 6) of the arc varies
with the height of the rectangle and the distance d

between two adjacent arcs varies with the width, as
shown in Fig. 7.
5.4. Integration of DOI-wave into DaisyViz and its use

New layout algorithms can be added into the DaiszVis
toolkit. For example, to include the DOI-wave design in
DaisyViz, we can integrate the above definitions and
layout algorithms into the VisualStructureLayout sub-
library of Mapping Lib.

Table 1 shows part of the UIMI profile of designing a
DOI-wave view for a network. The profile includes the
definitions of a data facet—Factory, and a view container
that has a DOI-Wave tool to visualize the data facet and
two indirect manipulation tools—Dynamic query and
Keyword Search. Fig. 8 is the system generated based on
this UIMI profile.

6. Application example

In this section, we present how DiasyViz works with an
example of building an interactive infovis application in a
manufacturer.

Table 2 shows the requirements of the application.
The target information for analysis is ‘‘Manufacture’’.
‘‘Manufacture’’ is an abstract conception, so it is divided
into four related concrete facets for analysis: Manufactory,
Product Order, Manufacturing Plan, and Plan Execution, as
shown in the column ‘‘InfoFacet’’ in Table 2. Each facet has
a set of data attributes, which are listed in the column
‘‘Data Attributes’’. The relationships among the data
instances within each facet are specified by the column
‘‘Data Type’’. The contents in the ‘‘Layout’’ column are the
view layout for each facet, and possible interaction tasks
associated with the view are listed in the column



Table 1
UIMI profile of a design to use DOI-wave for a network.

oData4 // data definition

o IFSet4 // information facets of interest

oIF // first information facet

IFID=‘‘Factory’’ // name of the facet

DISet=‘‘FactoryData’’ // source for data

DIRSet=‘‘FactoryRelationData’’4 // source for data relationship

oDataSource4 // parameters about data source

oConnetionString

Driver=‘‘SQLServerDriver’’

Data Source=‘‘DBServer’’

Initial Catalog=‘‘ManufactoryDB’’ /4
oFactoryData SQL=‘‘select � from factory’’ /4
oFactoryRelationData SQL=‘‘select select � from factoryRelations’’ /4

o/DataSource4
o/IF4

o/IFRSet4
o/Data4

oVisualization4 // visualization definition

oVS

VSID=‘‘VS_Factory’’ // id of the layout

LayoutAlgorithm=‘‘DOI-Wave’’4 // DOI-Wave layout

o/VS4
oVCSet4

oVC // a view container

VCID=‘‘VC_Factory’’

IFID=‘‘Factory’’ // data for the view

VSID=‘‘VS_Factory’’/4 // view style

o/VCSet4
o/Visualization4

oControl4 // control definition

o InDirectManipulationTaskControlSet 4
oDQC // dynamic query control

DQCID=‘‘DQC_OverallProduct’’

VCID=‘‘VC_Factory’’ // in which view container

DIAttri=‘‘OverallProduct’’

ValueRange=‘‘default’’/4
oKSC // keyword search control

KSCID=‘‘KSC_Manager’’

VCID=‘‘VC_Factory’’ // in which view container

DIAttri=‘‘Manager’’/4
o/InDirectManipulationTaskControlSet 4

o/Control 4

L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229222
‘‘Interaction Task’’. Between-facet relationships are
defined by attributes shared by related facets. For
example, the Manufactory and Product Order facets share
a data attribute, ManufactoryID, which defines the
relationship between factories and product orders—each
manufactory has certain orders and each order belongs to
a manufactory.

This table indicates the key demands that the infoVis

application should meet, including the following:
�
 providing support for different data types, such as tree,
graph, and multi-dimensional data, as shown in the
column ‘‘Data Type’’;

�
 providing support for specific layout algorithms, such

as Radial Graph, Force-Directed Graph, DOITrees,
TreeMaps, and Scatter Plot, as shown in the column
‘‘Layout’’; and

�
 providing support for various interaction techniques, such

as dynamic query, overview+detail, panning+zooming,
focus+context, and multiple coordinated views, etc., as
shown in the column ‘‘Interaction Task’’.
Based on the requirements in Table 2, we can use the
DaisyViz Modeler to create the UIMI profile of the
application. As shown in Fig. 9, the DaisyViz Modeler
provides three panels—the data modeler (Fig. 9a), the
visualization modeler (Fig. 9b), and the control modeler
(Fig. 9c). Here, the datasets are retrieved from a relational
database, so parameters required to establish a
connection to the database are specified and database
tables that are needed are also chosen in the data modeler
(Fig. 9a). Also, those key attributes that connect individual
facets can be explicitly identified in this panel; or the
common attributes among the facets, i.e., the foreign keys
in chosen tables, are selected by default to coordinate data
instances between different facets.

The visualization modeler allows a user to configure
layout algorithm, spatial substrate and the attributes of



Fig. 8. An Application of DOI-wave created with DaisyViz.

Table 2
Design requirements for manufacture in an enterprise Infovis application.

InfoFacet Data attributes Data type Layout Interaction task

Manufactory ManufactoryID, ManufactoryName,

OverallProductRate, Address,

Manager, AlertStatus

Graph Radial Graph,

Force-Directed

Graph

Overview, Pan, Zoom, DynamicQuery,

KeywordSearch, Detail, Brushing-and-

linking, Coordination

Product order ProductOrderID, Customer,

ProductID, OrderNumber, Priority,

ManufactureID

Tree DOITrees Overview, Pan, Zoom, DynamicQuery,

FilterByLegends, KeywordSearch, Detail,

FocusPlusContext,

Brushing-and-linking, Coordination

Manu plan PlanID, ProductOrderID,

PlanNumber, FinishDate,

ProductGroup

Tree TreeMaps Overview, Zoom, KeywordSearch, Detail,

Brushing-and-linking Coordination

Plan execution ExecID, PlanID, ProductID, Date,

FinishNumber, IsExpire, Quality

Multi-

dimensional

Scatter Plot Overview, Pan, Zoom, DynamicQuery,

FilterBy Legends, KeywordSearch, Detail,

Drill-down, Coordination

L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229 223
graphical marks for a given facet. Fig. 9b shows an
example of using the modeler to construct the view of the
facet of ‘‘Plan Execution’’. In the figure, a scatterPlot is
used for the facet, with its two axes mapped to two data
attributes ‘‘Date’’ and ‘‘ProductID’’. The label for each axis
is also specified in the filed of ‘‘Axis Mapping Attribute’’.
The data attributes ‘‘Quality’’ and ‘‘IsDelay’’ are chosen to
be mapped to the shape and color attributes of graphical
marks. This modeler also allows the user to define which
views would be coordinated. If such view coordination is
not specified, the views for those related facets are chosen
by default.

Fig. 9c shows how the control modeler works in
customizing interaction tasks. Here, the target is the
graph view for the facet ‘‘Manufactory’’. ‘‘OnItemRight-
Click’’ is selected as the DirectManipulationEvent for the
task Brushing-and-LinkingCoordination, which indicates
the brushing-and-linking coordination can be initiated
by a right-click event on nodes in the view graph. Data
attributes ‘‘Manager’’ and ‘‘OverallProductRate’’ are
chosen for the KeywordSearchControl and the Dynamic-

QueryControl.
The results of data modeling, visualization modeling,

and controlling are ported into an XML-based UIMI
profile. Fig. 10 shows part of the UIMI profile. This
profile can be edited with any XML editor.

Based on the UIMI profile, the DasiyViz Runner
generates a prototype system. As shown in Fig. 11a, a
list of facets are provided on the left panel. When a facet is
dragged and dropped into the blank area of the right
panel, the view corresponding to the facet can be created.
Each view contains two parts: a visualization area and a
control panel. The control panel contains necessary tools,
such as keyword search boxes, legends dropdown boxes,



Fig. 9. Modeling UIMI with DaisyViz modeler: (a) Data model to define the facet of ‘‘Manufactory’’, (b) Visualization model for the facet of

‘‘PlanExecution’’, and (c) Control model for the facet of ‘‘Manufactory’’.

L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229224



Fig. 10. Part of an XML UIMI Profile Generated by DaisyViz Modeler.

L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229 225
and dynamic query sliders. Coordinated views are
connected by red lines. Fig. 11b shows the results of
coordination in these coordinated views when a node in
the Force-Directed Graph view is right-clicked: a mouse-
clicking event triggers the brushing-and-linking
coordination between DOITrees and TreeMaps, and also
initiates the drill-down coordination in a Scatter Plot.
Fig. 11 also illustrates some other interaction techniques,
such as the detail tooltip and keyword search in the graph
view, dynamic query and filter by legends in the Scatter
Plot.

The DasisyViz is flexible; users can customize visuali-
zation tools by choosing different layout algorithms for
the same dataset. Fig. 12 shows a prototype system built
on the same dataset as that used to create Fig. 11, but
modeled with different views. Here, the Force-Directed
Graph in Fig. 10 is replaced with a DOI-wave view, the
DOITree is switched to a nested fisheye view, and the
Scatter Plot becomes a 3D bar chart.

As this application example shows, the DaisyViz toolkit
offers the following features:
�
 Providing a unified data structure for tree, graph, and
multi-dimensional data. (Since temporal, 1D, 2D, and
3D data are special cases of multi-dimensional data,
DaisyViz can also cover them.)

�
 Integrating a variety of layout algorithms, including

Radial Graph, Force-Directed Graph, DOI-Wave,
DOITrees, TreeMaps, Scatter Plot, CirclePacking Fish-
eyes, and Bar chart. New layout algorithms can also be
added.

�
 Supporting a wide range of infovis tasks, including

overview, pan, zoom, filter by data attributes/dynamic
query, filter by legends, keyword search, detail tooltip/
detail-on-demand, and coordination (e.g., brushing-
and-linking, drill-down, etc.).
7. Qualitative usability study

To further understand the expressiveness, effective-
ness, flexibility, and extensibility of DaisyViz, we con-
ducted a usability study on the use of DaisyViz to create
the manufacturing analysis application mentioned above
by 10 non-expert users.

Ten subjects had different jobs: four were computer
programmers, three were user interface designers, two
were data analysts, and one was a researcher on infovis.
All subjects, except the infovis researcher, lacked the
experience in building infovis systems. They all used
infovis applications in their daily work before the test.

The subjects were first given a tutorial about the
DaisyViz for about 45 min, including the concepts of UIMI,
the XML schema of UIMI profiles, and some samples
developed with the DaisyViz toolkit. Then, the subjects
were asked to perform three tasks with the DaisyViz toolkit
by using an SQL Server database that stored the manufac-
turing datasets. The first task was to create an application
with three views, covering graph, tree, and multi-dimen-
sional data. The subjects were asked to refine their views by
using color, size, or shape to represent information about
one or more data attributes. The second task was to add
interaction controls to implement the functions including
overview, pan, zoom, dynamic query, filter by legends,
keyword search, and detail tooltip. Finally, the subjects were
asked to add two coordination techniques among the three



Fig. 11. (a) A prototype system generated by DaisyViz runner with four related views connected with red links: Force-Directed Graph, DOITrees,

TreeMaps, and Scatter Plot. (b) Multiple views coordination triggered by a right-clicking the Force-Directed Graph: brushing-and-linking coordination

between DOITrees and TreeMaps, and Drill-Down Coordination in Scatter Plot. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229226
views, including brushing-and-linking coordination and
drill-down coordination respectively.

The tasks were carried out in a client-server environ-
ment and each subject was on a Windows PC client
(2.6 GHz Pentium 4 with 2 GB RAM). The time limit was
150 min and the subject performance was recorded for
further analysis. Each subject was interviewed about their
experience during the three tasks.

Our results showed that all subjects developed execu-
table applications with the DaisyViz. Eight of the ten
subjects completed all tasks, and four subjects finished in
100 min.



Fig. 12. An application with different views based on same dataset in Fig. 11.

L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229 227
The most common difficulty the subjects encountered
was that they had to switch frequently between the data
model configuration panel and the SQL Server database to
write SQL queries, because they thought the overview of
databases was not presented to them. Another interesting
observation was that some subjects preferred to directly edit
the XML-based UIMI profiles. They stated that editing the
XML profile seemed faster once becoming familiar with the
UIMI. However, the XML tags used in UIMI sometimes
slowed them down. For example, Brushing-and-LinkingCoor-

dination was initially called BLC, which was hard to interpret
by subjects. We also found that eight subjects made mistakes
while configuring interaction events because of the conflict-
ing events they defined. For example, three subjects specified
‘‘OnItemLeftClick’’ as the DirectManipulationEvent for two
tasks, DetailTooltip and DrillDownCoordination, which led to a
runtime error. They suggested that such configuration
conflict be detected automatically by the toolkit. As for the
interface of the DaisyViz Modeler, seven subjects suggested
that the controls for the mapping attributes configuration in
the panel of control model, such as the dropdown box of the
mapping attributes for dynamic query and keyword
search, be placed in the panel of visualization, because they
thought these configurations all belonged to the mapping
problems.

Responding to these issues, we improved the DaisyViz
in the following ways: (1) adding a graph visualization of
data schema of the database to the DaisyViz Modeler (see
Fig. 8a); (2) making the XML tags in the UIMI profile
clearer and more understandable; and (3) adding a
conflict detection module for interaction events.

In addition, our interview data showed that most
subjects appreciated the toolkit. They were surprised to
see such complex applications could be created so easily and
without much coding. The infovis expert, who had used
many infovis toolkits, stated ‘‘It’s unbelievable that the only
thing I need to do is editing a simple XML.’’ Eight of the ten
subjects decided to use the DaisyViz tool in their own work.
Some visualization applications created in the study have
been used for data analysis by the manufacturer.

8. Conclusions and future work

This paper presented DaisyViz, a model-based user
interface toolkit for the development of interactive infovis

systems with multiple coordinated views. The toolkit
relies on UIMI, a declarative interface model, as the core of
the development process to model data access, visualiza-
tion design, and view control. The task of end-users is to
build a UIMI profile according to domain-specific require-
ments, and then a prototype system can be generated
automatically by DaisyViz. DaisyViz can support unified
data structures and include a set of diverse layout
algorithms, which can be easily extended. In addition,
DaisyViz can support an extended taxonomy of infovis

tasks by providing commonly seen interaction techniques.
We showed an example of using DaisyViz by building an

infovis system for manufacturing data analysis. We also
conducted a qualitative usability study to understand how
non-expert users built infovis systems with DaisyViz. Both
the application development example and the user study
have demonstrated the effectiveness and flexibility of
DaisyViz in assisting the development of domain-specific
infovis systems.

In the future, we will improve DaisyViz in the following
directions. First, we will include more layout algorithms into
the toolkit to produce richer information visualization tools.
At the same time, we will develop APIs that allow users to



L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229228
add their own layout algorithms into the toolkit more easily.
Second, we will add new prebuilt expressions and functions
to support more data mapping methods so that users have
more choices in constructing their visualization tools based
their needs. Third, we will improve the toolkit by supporting
visual analytics tasks. Compared with infovis tasks, visual
analytics are more complex and demand support for the
understanding of more sophisticated relationships among
different data facets, among different views, and among
different user interaction activities. Furthermore, to better
support visual analytics, we will provide rich tools that
allow end-users to not only view the visualization results,
but also edit the results. Last but not least, we will extend
DaisyViz libraries to support building visualization systems
for thin clients, such as web-based applications.
Acknowledgments

This research was supported by the National High-
Tech Research and Development Plan of China under
Grant no. 2007AA04Z153, the National Grand Fundamen-
tal Research 973 Program of China under Grant no.
2007CB310900, China postdoctoral science foundation
under Grant no. 20100470185, and the National Natural
Science Foundation of China under Grant no. U0735004.

References

[1] S.K. Card, J.D. Mackinlay, B. Shneiderman, Readings in Information
Visualization: Using Vision to Think, Morgan Kaufmann,
San Francisco, 1999.

[2] B. Shneiderman, Dynamic queries for visual information seeking,
IEEE Software 11 (1994) 70–77.

[3] K. Hornbæk, B.B. Bederson, C. Plaisant, Navigation patterns and
usability of zoomable user interfaces with and without an over-
view, ACM Transactions on Computer–Human Interaction (TOCHI)
9 (2006) 362–389.

[4] G.W. Furnas, A fisheye follow-up: further reflections on focus+-
context, in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM Press, New York, 2006, pp.
999–1008.

[5] M.Q. Baldonado, A. Woodruff, A. Kuchinsky, Guidelines for using
multiple views in information visualization, in: Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI’00), ACM
Press, New York, 2000, pp. 111–119.

[6] B. Shneiderman, The eyes have it: a task by data type taxonomy for
information visualizations, in: Proceedings of the IEEE Workshop
Visual Languages, IEEE Computer Science Press, Los Alamitos, 1996,
pp. 336–343.

[7] J. Heer, S.K. Card, J.A. Landy, Prefuse: a toolkit for interactive
information visualization, in: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI’05), ACM Press, New
York, 2005, pp. 421–430.

[8] B.B. Bederson, J.D. Hollan, K. Perlin, J. Meyer, D. Bacon, G.W. Furnas,
Pad++: a zoomable graphical sketchpad for exploring alternate interface
physics, Journal of Visual Language and Computing 7 (1996) 7–31.

[9] B.B. Bederson, J. Meyer, L. Good, Jazz: an extensible zoomable user
interface graphics toolkit in Java, in: Proceedings of the ACM
Symposium on User Interface Software and Technology (UIST’00),
ACM Press, New York, 2000, pp. 171–180.

[10] B.B. Bederson, J. Grosjean, J. Meyer, Toolkit design for interactive
structured graphics, IEEE Transactions on Software Engineering 30
(2004) 535–546.

[11] C. North, B. Shneiderman, Snap-together visualization: a user
interface for coordinating visualizations via relational schemata,
in: Proceedings of the Working Conference on Advanced Visual
Interfaces (AVI’00), ACM Press, New York, 2000, pp. 128–135.
12] M. Takatsuka, M. Gahegan, GeoVISTA studio: a codeless visual pro-
gramming environment for geoscientific data analysis and visuali-
zation, Computers and Geosciences 28 (2002) 1131–1144.

[13] P.I. Godinho, B.S. Meiguins, A.S. Meiguins, R.M. Carmo, M.B. Carcia, L.H.
Almeida, R. Lourenco, PRISMA—a multidimensional information
visualization tool using multiple coordinated views, in: Procee-
dings of the 11th International Conference on Information Visualiza-
tion (IV’07), IEEE Computer Science Press, Washington, 2007
pp. 23–32.

[14] C. Stolte, D. Tang, P. Hanrahan, Polaris: a system for query, analysis
and visualization of multi-dimensional relational databases, IEEE
Transactions on Visualization and Computer Graphics 8 (2002) 1–14.

[15] K. Borner, Y. Zhou, A software repository for education and research
in information visualization, in: Proceedings of the Fifth Interna-
tional Conference on Information Visualisation (IV’01), IEEE
Computer Society Press, Los Alamitos, 2001, pp. 257–262.

[16] J.D. Fekete, The InfoVis Toolkit, in: Proceedings of the IEEE
Symposium on Information Visualization (InfoVis’04), IEEE Com-
puter Society Press, Washington, 2004, pp. 167–174.

[17] F.B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, M. McKeon, Many
eyes: a site for visualization at internet scale, IEEE Transactions and
Computer Graphics 13 (2007) 1121–1128.

[18] K. Matkovic, W. Freiler, D. Gracanin, H. Hauser, ComVis: a coordinated
multiple views system for prototyping new visualization technology,
in: Proceedings of the 12th International Information Visualization,
IEEE Computer Society Press, Washington, 2008, pp. 215–220.

[19] F. Paterno, Model-based Design and Evaluation of Interactive
Applications., Springer, Heidelberg, 2000.

[20] B.B. Bederson, B. Shneiderman, Ordered and quantum treemaps:
making effective use of 2D space to display hierarchies, ACM
Transactions on Graphics 21 (2002) 833–854.

[21] G.G. Robertson, J.D. Mackinlay, S.K. Card, Cone trees: animated 3D
visualizations of hierarchical information, in: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ACM
Press, New York, 1991, pp. 189–194.

[22] J. Lamping, R. Rao, The hyperbolic browser: a focus + context
technique for visualizing large hierarchies, Journal of Visual
Languages and Computing 7 (1996) 33–55.

[23] C. Plaisant, J. Grosjean, B. Bederson, Spacetree: supporting explora-
tion in large node link tree, design evolution and empirical
evaluation, in: Proceedings of the IEEE Symposium on Information
Visualization (InfoVis’02), IEEE Press, Boston, 2002, pp. 57–64.

[24] J. Heer, S.K. Card, DOITrees revisited: scalable, space-constrained
visualization of hierarchical data, in: Proceedings of the Working
Conference on Advanced Visual Interfaces (AVI’04), ACM Press,
New York, 2004, pp. 421–424.

[25] J. Yang, M.O. Ward, E.A. Rundensteiner, InterRing: an interactive
tool for visually navigating and manipulating hierarchical struc-
tures, in: Proceedings of the IEEE Symposium on Information
Visualization (InfoVis’02), Boston, IEEE Press, Boston, 2002, pp.
77�84.

[26] W.X. Wang, H. Wang, G.Z. Dai, H. Wang, Visualization of large
hierarchical data by circle packing, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI’06), ACM
Press, New York, 2006, pp. 517–520.

[27] P. Eades, Q.W. Feng, Multilevel visualization of clustered graphs, in:
Proceedings of the Fourth International Symposium on Graph
Drawing, Springer, Heidelberg, 1996, pp. 101–112.

[28] P. Eades, M.L. Huang, Navigating clustered graphs using force-
directed methods, Journal of Graph Algorithms and Applications 4
(2000) 157–181.

[29] K.P. Yee, D. Fisher, R. Dhamija, M.S. Hearst, Animated exploration of
dynamic graphs with radial layout, in: Proceedings of the IEEE
Symposium on Information (InfoVis’01), IEEE Computer Science
Press, Los Alamitos, 2001, pp. 43–50.

[30] R.A. Becker, W.S. Cleveland, Brushing scatterplots, Technometrics
29 (1987) 127–142.

[31] A. Inselberg, B. Dimsdale, Parallel coordinates: a tool for visualizing
multi-dimensional geometry, in: First Conference on Visualization,
IEEE Press, Washington, 1990, pp. 23–26.

[32] S. Havre, B. Hetzler, L. Nowell, ThemeRiver: visualizing theme
changes over time, in: IEEE Symposium on Information Visualiza-
tion (InfoVis’00), IEEE Press, Washington, 2000, pp. 115–123.

[33] D.A. Keim, J. Schneidewind, M. Sips, CircleView—a new approach
for visualizing time-related multidimensional data sets, in: Pro-
ceedings of the Working Conference on Advanced Visual Interfaces
(AVI’04), ACM Press, New York, 2004, pp. 179–182.



L. Ren et al. / Journal of Visual Languages and Computing 21 (2010) 209–229 229
[34] C. Tominski, J. Abello, H. Schumann, Axes-based visualizations with
radial layouts, in: ACM Symposium on Applied Computing, ACM
Press, New York, 2004, pp. 1242–1247.

[35] Graphviz, /http://www.research.att.com/sw/tools/graphvizS.
[36] M.S. Marshall, I. Herman, G. Melancon, An object-oriented design

for graph visualization. Software, Practice and Experience 31 (2001)
739–756.

[37] E. Thomsen, OLAP Solutions: Building Multidimensional Information
Systems, Wiley Computer Publishing, New York, 1997.

[38] W. Krentzer, B. Mckenzie, Programming for Artificial Intelligence,
Method, Tools and Applications, Addison-Wesley, New Jersey, 1991.

[39] H. Jeffrey, A. Maneesh, Software design patterns for information
visualization, IEEE Transactions on Visualization and Computer
Graphics 12 (2006) 853–860.

[40] S.K. Card, D. Nation, Degree-of-interest trees: a component of an
attention-reactive user interface, in: Proceedings of the Advanced
Visual Interfaces, 2002.

[41] W. Chris, Metavisual exploration and analysis of DEVise coordina-
tion in improvise, in: Fourth International Conference on
Coordinated and Multiple Views in Exploratory Visualization
(CMV’06), IEEE Computer Science Press, Washington, 2006,
pp. 79–90.

[42] J. Abello, H.F. Van, N. Krishnan, ASK-GraphView: a large scale graph
visualization system, IEEE Transactions on Visualization and
Computer Graphics 12 (2006) 669–676.

[43] M.C. Hao, M. Hsu, U. Dayal, A. Krug, Web-based visualization of
large hierarchical graphs using invisible links in a hyperbolic space,
in: Proceedings of the Fifth Working Conference Visual Database
Systems, 2000, pp. 83–94.

[44] B. Lee, C.S. Parr, C. Plaisant, B.B. Berderson, TreePlus: interactive
exploration of networks with enhanced tree layouts, IEEE Transactions
on Visualization and Computer Graphics 12 (2006) 1414–1426.

[45] M. Sarkar, M. Brown, Graphical fisheye views, Communications of
the ACM 37 (1994) 73–84.

[46] IBM ILOG JViews Diagrammer. Available from: /http://www-01.
ibm.com/software/integration/visualization/jviews/diagrammer/
about/features.htmS.

[47] Tom Sawyer Perspectives. Available from: /http://www.tomsawyer.
com/products/perspectives/java/index.phpS.

http://www.research.att.com/sw/tools/graphviz
http://www-01.ibm.com/software/integration/visualization/jviews/diagrammer/about/features.htm
http://www-01.ibm.com/software/integration/visualization/jviews/diagrammer/about/features.htm
http://www-01.ibm.com/software/integration/visualization/jviews/diagrammer/about/features.htm
http://www.tomsawyer.com/products/perspectives/java/index.php
http://www.tomsawyer.com/products/perspectives/java/index.php

	DaisyViz: A model-based user interface toolkit for interactive information visualization systems
	Introduction
	Related work
	UIMI: a user interface model for information visualization
	Data model
	Visualization model
	Control model

	Architecture of DaisyViz
	Overview
	DaisyViz core components
	DaisyViz libraries
	Data access lib
	Visual representation lib
	Render lib
	Control lib


	DOI-wave: a novel visualization technique in DaisyViz
	DOI-wave overview
	DOI model
	DOI-wave layout
	Integration of DOI-wave into DaisyViz and its use

	Application example
	Qualitative usability study
	Conclusions and future work
	Acknowledgments
	References




