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Knowledge discovery in multi-dimensional data is a challenging problem in engineering design. For exam-
ple, in trade space exploration of large design data sets, designers need to select a subset of data of interest
and examine data from different data dimensions and within data clusters at different granularities. This
exploration is a process that demands both humans, who can heuristically decide what data to explore and
how best to explore it, and computers, which can quickly extract features that may be of interest in the data.
Thus, to support this process of knowledge discovery, we need tools that can go beyond traditional computer-
oriented optimisation approaches and support advanced designer-centred trade space exploration and data
interaction. This paper is an effort to address this need. In particular, we propose the interactive multiscale-
nested clustering and aggregation framework to support trade space exploration of multi-dimensional data
common to design optimisation. A system prototype of this framework is implemented to allow users to
visually examine large design data sets through interactive data clustering, aggregation, and visualisation.
The paper also presents an evaluation study involving morphing wing design using this prototype system.

Keywords: trade space exploration; visualisation; multiscale visualisation; multi-dimensional data;
multiscale data; nested clustering and aggregation

1. Introduction

Complex engineered systems such as automobiles, aircraft, and satellites usually consist of mul-
tiple, interacting sub-systems and components that are often designed by engineers from a variety
of disciplines. The main challenge when designing such systems lies in resolving the inherent
trade-offs that exist both within and between sub-systems and the overall system.

The design of such complex engineered systems is starting to experience a paradigm shift. More
and more, designers want to go beyond single point solutions obtained from a fully automated
optimisation process and explore trade space while ‘shopping’ for the best design that suits their
needs and meets the customers’ requirements. This paradigm shift from design optimisation to
design exploration is being enabled by recent advances in computing power and speed and novel
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2 X. Zhang et al.

visualisation software; however, designers are encountering new problems such as information
overload in that they have too many options from which to choose and become overwhelmed, not
knowing which design is the best. Trade space here refers to the ‘potential solution space’ (Ross
et al. 2004). This space consists of a set of multiple design alternatives, data attributes, or system
parameters that designers can evaluate to satisfy various design objectives (Brantley et al. 2002).

Designers need help in analysing large data sets and generating knowledge from them. Usually,
large data sets are multi-dimensional and stored in databases, and designers often choose part of
a data set in certain dimensions and examine their behaviour in other dimensions. One of the
primary challenges in the design of complex engineered systems, such as cars, is to identify inter-
esting trends among many design alternatives. Designers explore multiple design alternatives to
evaluate the impact of changes in the design parameters (e.g. car size, engine size, the number of
cylinders, etc.) on the performance of the car (e.g. fuel efficiency, torque). To determine the best
design(s) among thousands of simulated design alternatives – created by varying these design
variables and storing the corresponding values of the performance variables for each alternative
– designers need to compare the performance of each alternative to choose the best design vari-
ables. Designers need effective tools for choosing data of interest (often a subset of the whole
data set), selecting the attributes to observe (e.g. engine size, weight in the aforementioned exam-
ple), and determining which attributes to cluster during data analysis (e.g. fuel efficiency, torque).
Furthermore, designers would benefit greatly from controlling the way in which they compare
design alternatives, such as evaluating data clusters with different aggregation methods (e.g. mean,
median, and sum) and changing the size of clusters. Current data analyses and visualisation tools
in engineering design do not support these diverse needs well. Advanced visualisation techniques
like the scatter plot matrix (Carr and Nicholson 1985) are largely ad hoc and often overwhelm
designers with too much information.

To support trade space exploration for multi-dimensional data, we propose an interactive
multiscale-nested clustering and aggregation (iMSNCA) framework in this paper. The novel
framework puts design activities in the forefront and emphasises the role of computational tools
in supporting such activities by considering the characteristics of design data. The next section
reviews relevant literature. Section 3 introduces the framework, and a prototype system is described
in Section 4. An evaluation study involving an aircraft wing design problem is presented in
Section 5. Finally, the benefits and limitations of this research are discussed in Section 6.

2. Related work

The research questions we address in this paper are related to trade space exploration in engineer-
ing design, scientific and information visualisation, and multi-dimensional and multiscale data
interaction. Each is reviewed in the following sections.

2.1. Visualisation in engineering design

Much of the research in the design of complex engineered systems has focused on novel for-
mulations and algorithms for solving optimisation problems (Chen et al. 2000, Deb 2001,
Sobieszczanski-Sobieski et al. 2003); approximation methods to reduce the computational
expense of these analyses (Haftka et al. 1998, Simpson et al. 2001); and computational frame-
works to integrate analyses from multiple disciplines (Phoenix Integration 1999, Koch et al.
2002). Despite the advances and developments over the past two decades, design optimisation
still has several shortcomings and challenges (Papalambros 2002). Balling (1999) has noted
that the traditional optimisation-based design process of ‘(1) formulate the design problem, (2)
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Journal of Engineering Design 3

obtain/develop analysis models, and (3) execute an optimisation algorithm’ often left designers
unsatisfied with their results because the problem is usually improperly formulated: ‘the objectives
and constraints used in optimisation were not what the owners and stakeholders really wanted
. . . in many cases, people don’t know what they really want until they see some designs’. Similar
findings have occurred in other fields. For instance, Shanteau (1992) observed that when people
are dissatisfied with the results of a rational decision-making process, they often change their
ratings to make it come out the way they want. Wilson and Schooler (1991) have shown that
people do worse at some decision tasks when asked to analyse the reasons for their preferences
or to evaluate all the attributed of their choices.

Consequently, there is an emerging paradigm of design exploration whereby designers ‘shop’
for the best solution using visualisation tools instead of relying solely on optimisation. This design
by shopping process, introduced by Balling (1999), allows designers to explore the design space
first and then choose an optimal solution from a set of possible designs after ‘forming realistic
expectations of what is possible’. This approach can be classified as an a posterior articulation of
preferences to solve a multi-objective optimisation (Hwang and Masud 1979) in that designers first
form their preferences based on visualisation of the entire design space and then choose an optimal
design that is based on their formed preference. The basic steps to such an approach include (1)
creating a simulation model to analyse the system being designed, (2) generating thousands of
simulated design alternatives by varying design variables and storing the corresponding values of
the performance variables for each alternative, and (3) using visualisation tools to explore these
design alternatives and ‘shop’ for the best design (Stump et al. 2003, 2004).

To date, trade space exploration has focused primarily on developing virtual environments and
visualisation tools to support such an approach. For instance, spherical mechanism design has ben-
efited greatly from virtual reality advancements (Evans et al. 1999, Furlong et al. 1999, Kihonge et
al. 2002), as have large-scale manufacturing simulations (Kesavadas and Sudhir 2000, Kelsick et
al. 2003). Several researchers have also looked at effective interface development for virtual envi-
ronments (Mulder et al. 1998, Volkov and Vance 2001, Balijepalli and Kesavadas 2004). Virtual
reality has supported a wide variety of engineering design problems (Jayaram et al. 2001); how-
ever, such environments tend not to support trade space exploration since they are used to visualise
a single point solution, not explore the entire trade space. Cloud visualisation (Eddy and Lewis
2002), the visual design steering methods (Winer and Bloebaum 2001, Winer and Bloebaum,
2002a, 2002b), the ATSV system (Stump et al. 2003, 2004), and the U.S. Naval Research Lab-
oratory’s visual steering methods in their Virtual Reality Lab and High Performance Computing
Center (Smith et al. 1999) are exceptions to this, but these methods are used in an ad hoc manner to
support design decision-making – none of the research in engineering design has investigated the
knowledge discovery process during trade space exploration or formalised systematic procedures
to support it. Meanwhile, efforts to simplify the visualisation of n-dimensional Pareto frontiers
(Agrawal et al. 2004) and group uncertainty-related data into ‘bricks’(Kanukolanu et al. 2006) pro-
vide good intentioned, yet still ad hoc, solutions to the problem of overwhelming designers with too
much information as they are put ‘back in the loop’ as part of the trade space exploration process.

2.2. Scientific and information visualisation

Research on using visualisation to facilitate information and knowledge processing has advanced
greatly in the past two decades. Card et al. (1999) classify visualisation techniques into two
categories – scientific visualisation and information visualisation – based on the nature of the data
being visualised. Scientific visualisation usually deals with physical data. In scientific visualisation
projects, such as flow vector visualisation (Shahnawaz et al. 1999, Wasfy and Wasfy 2003, Laidlaw
et al. 2005), the spatial relationship of physical objects is accurately mapped (often re-scaled to fit
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4 X. Zhang et al.

the screen) into that of visual components so that scientific phenomena can be accurately measured
and clarified. Information visualisation extends beyond physical data and usually focuses on
helping people analyse and make sense of more abstract phenomena. For example, Card et al.
(1991) proposed a 3D-based visualisation technique for information visualisation where the 3D
space is used to expand people’s information workspace and reduce the cognitive costs in dealing
with complex data, rather than just as a habitat to show 3D data.

Information visualisation also provides a means for exploratory analysis (Nagel 2006). While
scientific visualisation emphasises confirmatory analysis (i.e. confirm or reject hypotheses), infor-
mation visualisation can also help people identify new hypotheses through cognitive amplification
and user-centred interactive designs (Card et al. 1999). Cognitively, information visualisation ben-
efits users by increasing available spatial (e.g. large workspace) and cognitive resources (e.g. less
demand for information recall mentally), improving searching processes (e.g. colour-coded visual
search), enhancing pattern recognition (e.g. visual icons), etc. Interactively, information visuali-
sation allows users to manipulate the data transformation from raw data (e.g. direct manipulation),
control the mapping between data and visual forms (e.g. hierarchical visualisation as discussed
later), and modify the views on visual forms (e.g. zooming). Cognitive amplification and flex-
ible interaction facilitate a knowledge crystallisation process that provides ‘the most compact
description possible’ of complicated data and information (Card et al. 1999).

Making sense of large data sets often involves creating structures and putting data into struc-
tures (Russell et al. 1993), and this ‘sense-making’ process is often a critical component in the
knowledge crystallisation process. The famous ‘knowledge hierarchy’ of Lucky (1989) argues
that knowledge is built upon information, which is in turn built upon data. In this sense, knowl-
edge is the result of aggregating information, and knowledge discovery arises from organising
fragmental information into structured knowledge schemas. However, finding appropriate struc-
tures to organise available information is a complicated yet cognitively costly process, because
possible structures must be mentally searched and modified to fit all information of interest. Such
searching and fitting activities are conceptual and involve an analysis of the attributes of both
knowledge structures and information pieces. To reduce the cognitive costs of ‘sense-making’,
researchers have proposed a variety of structures for organising information (Qu and Furnas 2005).
Among these structures, hierarchies are frequently used to organise information and knowledge:
they provide semantic descriptions with different levels of detail and allow users to navigate
through the different levels with context and content as needed. Techniques for visualising hierar-
chies include treemaps (Shneiderman 1992), Cone Trees (Robertson et al. 1991), and hyperbolic
views (Lamping and Rao 1994), which use nested boxes, 3D space and interactive animation, and
hyperbolic representations, respectively.

Although information visualisation is regarded as a means to crystallise knowledge,
visualisation-based methods to support knowledge discovery in engineering design are not well
understood. Among the extensive literature on information visualisation, we are particularly inter-
ested in research on multi-dimensional and multiscale data visualisation because design data for
complex engineered systems is usually multi-dimensional and designers often need to examine
data at different levels of analysis when designing different sub-systems.

It should be pointed out that data visualisation is a broad topic that has been researched by
scientists from many disciplines. For example, researchers in statistics also have developed pow-
erful tools to assist the analysis of multi-dimensional data (Unwin et al. 2006, Cook and Swayne
2007). However, these tools are often built upon specialised statistics software packages (e.g.
R), making it impractical to integrate them into general-purpose, stand-alone visualisation sys-
tems. Also, the focus of such tools is on visualising general statistical characteristics of large data
sets and need to be further enhanced to support trade space exploration, which often concerns
both general data distributions of data at a global level and potential data anomalies at local
levels.
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Journal of Engineering Design 5

2.3. Multi-dimensional and multiscale data interaction

Extensive research has been done in visualising multi-dimensional data.Although these techniques
are not targeted at in-depth analysis, such as quantitatively comparing a few dimensions, their
focus on visualising overall relationships does serve as the entry point to understanding of multi-
dimensional data. Parallel coordinates (Inselberg 1985) represent individual dimensions as parallel
lines and plot a multi-dimensional record as a poly-line across parallel coordinates, revealing
cross-dimension patterns and trends. There are also some variations derived from this technique
(Hoffman et al. 1999) by positioning individual dimensions in different ways. These techniques
are effective to present overall trends, but lack detailed descriptions of between-dimension rela-
tionships and aggregated information of individual dimensions. Scatter plot matrices (Carr and
Nicholson 1985) use a matrix to organise scatter plots between each pair of dimensions and
help users quickly grasp the overall trends and relationships between each pair of dimensions
and then pick those of interest. Recently, this technique was improved by the rank-by-feature
(Seo and Shneiderman 2005) method, which colour-codes the matrix cells based on the magni-
tude of correlation between each pair of dimensions. However, these techniques largely focus on
between-dimension relationships, and they do not provide sufficient support for detailed analy-
sis within dimensions of interest. The Table Lens technique (Rao and Card 1995) uses a simple
2D table to hold data for in-depth, within-dimensional data analysis, but the tools are largely
about ranking and sorting data, which are not sufficient for engineering design. Recently, some
commercial software packages (e.g. http://www.tableausoftware.com/, http://www. ilog.com, and
http://www.grantadesign.com/products/ces/) provide comprehensive tools for multi-dimensional
data visualisation. However, their support for in-depth data analysis within the same dimen-
sion is insufficient to enable designers to examine how designs may vary at different levels of
analysis.

Multiscale user interfaces, also called zoomable user interfaces, allows users to control the
levels of detail in visualising and interacting with large data sets. Benefits of multiscale tools
include helping users obtain desired context and content information and showing important
characteristics of data at various scales at the same workspace (Perlin and Fox 1993, Furnas and
Bederson 1995, Bederson et al. 1996). However, most systems that use multiscale tools, such as
PhotoMesa (Bederson 2001), are targeted at data sets that are already hierarchically structured.
Few designs can support interaction with raw data sets that do not have hierarchical structures or
are not structured at all.

Semantic zooming is a powerful tool in multiscale user interfaces for visualising different
data properties across scales. For example, with semantic zooming, designers can examine what
factors affect the characteristics of a new material by seeing features from the atomic level (e.g.
the strength of atomic bonds) to the microscopic level (e.g. the tangle of molecules) and to the
macroscopic level (e.g. mechanical stress). However, how to generate semantic representations
across scales is still a challenge. Some efforts have been made to interactively construct semantic
representations for a small set of objects (Furnas and Zhang 1998), but it is still difficult to deal
with large data sets with thousands or even millions of data records.

Another stream of relevant research is multi-facet information visualisation and navigation.
Originating from the area of library science, a facet refers to an aspect in which information is
organised (Hearst 2006) and can be regarded as equivalent to dimension, but with different focus.
While dimension tends to be used to describe the intrinsic aspect of data, facet emphasises the
perspective of people’s understanding of data. Often, dimension and facet are inter-exchangeable
(Hearst 2006), but in some situations, such as visualising unstructured data, data dimension may
be difficult to identify, but data facets can be generated with the help of tools like data mining.
Designs have been explored to combine different data and visual facets in support of information
search and knowledge visualisation (Hearst 2006, Dachselt et al. 2008). Usability studies have
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6 X. Zhang et al.

shown that multiscale faceted designs are effective in assisting navigation in large information
space (Dachselt and Frisch 2007). It has also been found that facet-based visualisation tools
need to provide users with accurate and appropriate facet descriptions in support of information
exploration (Hearst 2009). This finding echoes an argument on effective view navigation (Furnas
1997), which suggests that visual information should be sufficient for users to see where to go
and at the same time should be succinct to avoid making views cluttered. This issue is even
more challenging in dealing with multi-dimensional engineering data, because unlike data sets
in these facet-based visualisation tools, which usually already have had pre-defined hierarchical
facet structures, multi-dimensional engineering data usually do not have finer structures within
individual data dimensions to describe the characteristics of possible data clusters.

In summary, while visually guided knowledge exploration in complex data becomes increas-
ingly important, existing research has not sufficiently addressed the user needs concerning
multiscale data clustering of multi-dimensional data.

3. The iMSNCA framework

The iMSNCA framework is an effort to address this issue. This framework has been developed
based on our rich experiences in developing visualisation-based knowledge exploration systems
(Stump et al. 2003, 2004, Zhang et al. 2008, Wu et al. 2009) and our observations of the design of
complex engineering systems (e.g. car, airplane) that involve extensive use of simulation-based
design and struggle with visualising the results.

3.1. Framework development

When designers visualise large data sets, one of the primary goals is to identify interesting trends
among thousands, if not millions, of design alternatives. For vehicle design, for instance, we may
be interested in understanding how car size, car type, engine size, etc., affect vehicle performance
characteristics such as torque, fuel efficiency, weight, etc. Designers might also want to know
how these performance characteristics are correlated; so, a designer might, for instance, construct
a scatter plot of available design alternatives to see how torque and highway efficiency are related
(Figure 1(a)). From this figure, the designer might see that the points tend to concentrate in the
middle torque region, and a savvy designer might want to explore the data more to identify how
this relates to the size of the car (i.e. compact, mid-size, large). After viewing the scatter matrix
in Figure 1(b), the values can be grouped by size and groups can be represented by different
glyphs to create Figure 1(c), which provides valuable insight among three groups: designs in a
size group with lower torques (represented by ‘+’) lead to better results than those in other two
size groups with higher torques. The designer can review these three size groups in more detail
by comparing the average highway efficiency for each group as seen in Figure 1(d). During the
exploration, the designer can change the viewing scale of any graph at any time to see general
patterns or detailed data.

This example exploration process demonstrates several major tasks in the trade space explo-
ration process. First, the designer selects three dimensions (highway efficiency, torque, and size)
out of those available data dimensions and then clusters the data based on the dimension(s) of
interest (car size in this case). Next, the designer uses different graph types, a scatter plot and a
histogram in this case, to compare data clusters of interest. Some graph types (e.g. histogram)
show the aggregate descriptions of data clusters, while some (e.g. scatter plot) do not. Finally, the
designer explores design alternatives at different levels of analysis by manipulating the viewing
scale of the graphs (e.g. zooming out on the scatter matrix to browse the overall pattern or zooming
in the matrix to examine the relationship between any two dimensions).
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Journal of Engineering Design 7

Figure 1. Car design trade-off example. (a) Initial scatter plot. (b) Correlation scatter matrix. (c) Plot glyph coded by
size. (d) Average highway efficiency by height.

Figure 2. iMSNCA framework for engineering design.

Based on these observations and a visualisation model by Card et al. (1999), we propose the
iMSNCA framework shown in Figure 2.

This framework elaborates data objects (rounded-squares) and user tasks (ovals) involved in
interactive processes of trade space exploration. In the following sections, these tasks are briefly
introduced. Detailed descriptions on the algorithms of key task components of this framework
can be found in Section 4.

3.2. iMSNCA framework tasks

3.2.1. Data downsizing

There are some benefits to using downsized tables. One of them is to reduce the size of the
data that subsequent processes, such as visual mapping and view transformation, have to handle.
In particular for large data sets with hundreds or even thousands of dimensions, a downsized
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8 X. Zhang et al.

table can dramatically reduce the burden of machine processes and accelerate visualisation speed.
Also, with downsized data, unwanted dimensions and information corresponding them can be
eliminated on screen, releasing more screen space for important data.

A designer usually relies on data management tools to downsize data. Using a database, for
example, the designer has to know how to create tables or index for data subsets. Thus, the designer
also needs to master data management tools in trade space exploration. It would be beneficial to
integrate interactive tools that can automatically create data subsets based on user actions, with
visualisation tools.

3.2.2. Data clustering

Clustering in this case refers to a task that groups data records based on their values in certain
dimensions of interest. When a designer is interested in multi-dimensional data, clusters on differ-
ent dimensions are often needed. Take the aforementioned car design example: the designer wants
to know the impact of each design variable, or each dimension of data, on design. It is necessary
to examine how different values of a dimension may affect the outcomes of design as well as how
these dimensions together may affect designs. Thus, the designer needs tools to cluster data by
different design dimensions.

We refer to the clustering of data on multiple dimensions as multi-dimensional clustering.
Multiple dimensions can be used to cluster the data in different ways. They can be chosen in a
serial manner, one dimension after the other, or in parallel, several dimensions chosen together.
For example, suppose two design factors – engine size and the number of cylinders – are of interest
in the car design example. With a serial multi-dimensional clustering approach, the designer first
clusters design alternatives according to their engine size or the number of cylinders first, and
then sub-clusters by the other dimension.

The designer often groups data at different scales as well. Larger yet coarser clusters contain
more data and can provide a high level of abstraction, while smaller and finer clusters contain
less data but provide more accurate information on individual records. Such multiscale clustering
is important because large clusters can help the designer identify trends and find which clusters
to focus on, while small clusters can provide more concrete evidence of trends. With multiscale
clustering, the designer can shift between detailed information on individual design alternatives
while maintaining a good overall understanding of how alternatives in different clusters may be
different from each other. The designer can benefit from tools that support interactive control over
data clustering dimensions and if multiple dimensions are involved, the way these dimensions
should be linked.

It should be noted that data downsizing and data clustering serve for different purposes in our
framework. Both tasks can reduce the amount of data and information users have to deal with,
but they achieve this goal in different ways. Data downsizing reduces data amount by eliminating
those data dimensions that users are not interested in, while data clustering aggregates data points
that share common features so that users will see a small set of data groups rather than a large
amount of fragmental data points.

3.2.3. View graph selecting

Various kinds of view graphs can be used in data visualisation; however, choosing an appropriate
graph type is important for cognition (Card et al. 1999). Different view graphs can serve different
purposes in knowledge exploration. Figure 3 shows two other types of view graphs to compare
the averages of three groups. In addition to the histogram shown in Figure 1(d), the designer
can also use a simple line graph (Figure 3(a)) for ratio or scale data. Or if exploring the fuel
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Figure 3. Different view graphs for visual comparison. (a) Line chart for scale or ratio data. (b) Multi-level clustered
data as nested boxes.

efficiencies of sub-clusters within three car sizes is needed, the designer can choose a view shown
in Figure 3(b) to see how many sub-clusters exist inside each car size and what their average
highway efficiencies are based on the relationships of those nesting boxes and their sizes.

3.2.4. Aggregation controlling

To compare clustered data, the designer can use aggregation tools to acquire descriptive infor-
mation about how clusters differ from one to another. Data can be aggregated in different ways.
Often seen aggregation methods include the total count of records, the average, median, and sum
of data of interest, the maximum and minimal values of data, etc. It would also be desirable to let
the designer choose different data aggregation methods.

3.2.5. View controlling

The designer can control the view of view graphs by panning or zooming. What we are interested
in here is the zooming tool that can change the size of viewed objects as well as data clusters.
With zooming, the designer can easily move from the glyph-based scatter plot in Figure 1(c),
which shows a general pattern but is still cluttered, to a view by which it is easy to compare design
options in different clusters side by side (Figure 4).

Figure 4. Separated scatter plots of three size clusters.
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10 X. Zhang et al.

When data are clustered under two dimensions, the designer can zoom in the graph seen
in Figure 1(c) and see scatter plots in two dimensions. Figure 5 shows such two-dimensional
scatter plots organised as a spreadsheet (Chi et al. 1997), in which the values of car size change
horizontally and those of car type change vertically. The designer can compare design options in
two dimensions simultaneously.

Changing the view scale from Figure 1(c) to Figure 4 or from Figure 1(c) to Figure 5 also implies
a scale change for data clustering since the levels of the data clusters visualised in Figures 4 and 5
are different from that of the data cluster in Figure 1(c). Thus, the notion of scale in our iMSNCA
framework differs from the concept of scale in traditional multiscale user interfaces, which is
usually regarded as a measure of the rendered size of objects (Bederson et al. 1996, Perlin and
Fox 1993). Scale in our framework is a measure of interaction activities that include both data
clustering and graph viewing. Zooming here is a tool to resize visual objects as well as a means
to control the level of data clustering.

Although our research on trade space exploration has studied most of these data manipulation
tasks (Stump et al. 2003, 2004), it is rare to see systems to support engineering design with
interactive data clustering across different scale levels of analysis. This research investigates the
design, implementation, and application of the proposed approach.

Figure 5. Part of scatter plots matrix on size and type.
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4. Prototype design and implementation

To test the proposed framework, a prototype system is developed. In this section, we introduce
the analytical forms of data downsizing, clustering, and aggregating and describe the design and
implementation of the system. Analytic forms are developed to provide a formal definition for
downsizing, clustering, and aggregating tasks and to guide their implementation.

4.1. Analytic forms for data transform

Let us define a raw data set D with n-dimensions:

A = {a1, a2, . . . , an}, (1)

where A is the set of all dimensions; ai is one dimension; and n is the total number of dimensions.
Any data record in the data set is

d = (da1, da2, . . . , dan), (2)

where dai is the value of the record on the ai dimension.
Then, the data set can be written as

D = {d1, d2, . . . , dm}, (3)

where di is one record and m is the total number of records.

4.1.1. Downsizing

Downsizing is a task to generate a subset, Ds , out of D. Ds is written as

As = {as
i |as

i ∈ A, i = 1, 2, . . . , k}
ds = (das

1, das
2, . . . , das

k)

Ds = {ds
1, d

s
2, . . . , d

s
k },

(4)

where As is the set of all dimension chosen for a data table; as
i is its member; k is the total number

of its members; ds is a data record of the subset Ds ; and das
i is its value on the as

i dimension.

4.1.2. Clustering

Assume all possible values of a dimension ai make up a set, Vai . k clusters can be created on the
dimension, and the value ranges of each cluster are defined as sets Vi , i = 1 . . . k.

Assume ac is the clustering dimension. Then, a cluster is

Ci = {ds |dsac ∈ Vi}i = 1, . . . , k,

Vi ⊂ V ac, �Vi ⊂ Vac i = 1, . . . , k,

Vl ∩ Vm = φl, m = 1, . . . , k, l �= m,

(5)

where Ci is a cluster.
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12 X. Zhang et al.

4.1.3. Multi-dimensional clustering

Multi-dimensional clustering chooses different ac. For parallel multi-dimensional clustering,
multiple dimensions are applied at once. Assume two clustering dimensions are ac1 and ac2 and
the numbers of data clusters on each individual dimension are k1 and k2, respectively. A cluster
Cl under this parallel multi-dimensional clustering is

Cl = {ds |ds
ac1

∈ V 1
i and ds

ac2
∈ V 2

j } i = 1, . . . , k1, j = 1, . . . , k2,

l = 1, . . . , k1 × k2,

V 1
i ⊂ V ac1,

∑
V 1

i ⊂ V ac1 i = 1, . . . , k1,

V 1
l ∩ V 1

m = ϕ l, m = 1, . . . , k1, l �= m,

V 2
i ⊂ V ac2,

∑
V 2

i ⊂ V ac2 i = 1, . . . , k2,

V 2
l ∩ V 2

m = ϕ l, m = 1, . . . , k2, l �= m.

(6)

Multi-dimensional clustering with more clustering dimensions can be defined similarly.
As shown, how many data clusters should be created in our method is based on a given number.

For discrete variables, such as categorical variables, this number can be determined by the number
of all possible values and data clusters can be created by group data with similar values. For
continues variables, this number can be specified by users and then clusters can be created with
k-mean algorithms.

4.1.4. Multiscale clustering

For multiscale clustering, a cluster may have sub-clusters. Assume a cluster Ci is further divided
into q sub-clusters according to a clustering dimension a′

c, and the value ranges of each sub-cluster
are defined as sets V ′

j , j = 1, . . . , q. Then, all of the sub-clusters of Ci can be written as

Ci,j = {ds |ds
a′

c
∈ V ′

i } i = 1, . . . , q,

V ′
i ⊂ V a′

c,
∑

V ′
j ⊂ V a′

c i = 1, . . . , k,

V ′
l ∩ V ′

m = ϕ l, m = 1, . . . , k, l �= m,

(7)

where Ci,j is a sub-cluster within the cluster Ci . In this multiscale clustering, clustering dimensions
at different scales, a′

c and ac, could be the same or different.

4.1.5. Aggregating

With data clusters, aggregation can be done easily as long as the dimension(s) that would be
aggregated and the aggregation functions are known or specified. Assuming the dimension to
aggregate ag , for a particular cluster Ci , its aggregated description is

Gi = F(dc
1|ag

, dc
2|ag

, . . . , dc
p|ag

), (8)

where Gi is the aggregated value of Ci ; F is the specified aggregation function; dc
i|ag

is the value
of the ith member of Ci on the dimension of ag; and p is the total number of elements in Ci .

It should be noted that in our framework, how individual data sets are generated is less of
a concern. Data clusters can be created by conventional methods (e.g. k-mean clustering and
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hierarchical clustering), database queries (e.g. using aggregation functions to create data groups),
or other advanced statistic approaches. What really matters here is the capability that designers
need to interact with a clustering method in determining what data dimension should be chosen to
cluster data, what different scales should be applied in clustering, and how to aggregate clustered
data. In this sense, the clustering concept we discuss here emphasises interactive data clustering
that involves both raw data and user interests in data analysis. Massive research has been done on
data clustering algorithms, but little attention has been given to user interaction with such clustering
methods. The focus on this framework is on integrating the user factor with advanced data analysis
methods in knowledge discovery, rather than on the development of clustering methods.

4.2. User interface design

Figure 6 shows the overall user interface of the prototype system after a designer provides infor-
mation about the database and table where the data of interest are stored. The user interface has
eight panels. Panels 1–4 are for data control. When raw data is ported into the system, the names
of all data dimensions are displayed in Panels 1 and 3 for the designer to choose what dimensions
to observe (Panel 1) and to what dimensions data are clustered (Panel 3). In Panel 2, the designer
can choose aggregation methods (e.g. simple count, average, sum). Panel 4 allows the designer
to choose data filtering.

Panels 5–7 are for results display and interactive view control. Panel 5 shows view graphs and
allows the designer to zoom and pan workspace as well as to choose different graphs. Panel 6 is
a scale canvas that shows the viewing scale and allows the designer to manipulate the clustering
order when multiple clustering dimensions are involved, of which we will provide more details
later. Panel 7 displays the data results in text corresponding different analysis operations.

4.2.1. Choosing dimensions to observe and aggregate

The designer can choose one or two dimensions to observe simultaneously. When two dimensions
are selected, a scatter plot is generated and displayed in the primary view, as shown in Figure 6.
When the designer chooses one dimension to observe and another dimension to cluster, visuali-
sation results show different clusters and their aggregated values. Based on the data from the car

Figure 6. User interface of the prototype system.
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14 X. Zhang et al.

Figure 7. Example of four clusters based on different observing and clustering dimensions.

design example, Figure 7 shows a view with torque as the dimension to observe and the number
of cylinders as the clustering dimension. The seven boxes indicate seven clusters and box size
corresponds to the aggregation result, which is the average torque, of each cluster. It is easy to
compare different clusters based on the box sizes.

4.2.2. Choosing multiple clustering dimensions

The designer can also choose different dimensions to observe the same data set. Different
dimensions can be observed either independently or combined simultaneously. Keeping multiple
dimensions independently, the designer can switch from one clustering dimension to another.
Figure 8 is a view under the same aggregation method as in Figure 7, but with a different cluster-
ing dimension (car size here). As seen, different clusters are produced under different clustering
dimensions.

Combining different clustering dimensions together creates multiscale and multi-dimensional
clustering. Figure 9 shows the view results of choosing both car size and the number of cylinders
as clustering dimensions. Figure 9(a) is the clustering result under car size only. Zooming in, the
designer sees each size cluster has several sub-clusters on the number of cylinders (Figure 9(b)).
Zooming in further, the designer finds details of individual clusters on car size and the number
of cylinders (Figure 9(c)). The nesting boxes show the relationship between these two clustering
dimensions and provide contextual information about individual clusters and their parent or child
clusters. The transition from Figure 9(a) to (c) is continuous and smooth through semantic zooming
(Furnas and Bederson 1995, Bederson et al. 1996).

4.2.3. Control multiple clustering dimensions

The designer can manipulate the ordering of the dimensions for clustering when multiple clustering
dimensions are involved (e.g. cylinder number clusters within car size clusters or vice versa).
Controlling the ordering allows exploring data from various aspects. The ordering of clustering
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Figure 8. Different clustering dimensions.

Figure 9. Multiscale clustering. (a) Clusters on car size. (b) Sub-clusters on cylinder number within size clusters.
(c) Clusters on car size and cylinder number.

dimensions is achieved in the scale canvas through direct manipulation. Each clustering dimension
is represented as a bar in the canvas (Figure 10). These bars are stacked together and can be dragged
and dropped. Figure 10 shows the process adjusting the two clustering dimensions in the example
of Figure 9. Consequently, the nesting relationship between clusters in these two dimensions is
reversed.

4.3. Implementation

The prototype is implemented with Java and the Piccolo toolkits (Bederson et al. 2004). It has
three layers. The bottom layer processes raw data and converts the data from other formats (e.g.
tab or comma-delimited raw data) into a MySQL database. The middle layer is a module to
connect the user interface with the database. The responsibilities of this layer include formulating
SQL queries based on user preferences (e.g. data dimension, aggregation method, and filtering
method), sending queries to the database, receiving query results, and constructing data tables. As
discussed previously, the focus of this framework is on integrating the user factor with advanced
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16 X. Zhang et al.

Figure 10. Adjusting the ordering of clustering dimensions. (a) Initial order, (b) adjusting the order, and (c) final order.

data analysis methods in knowledge discovery, rather than on the development of clustering
methods. One of the assumptions here is that users can choose any appropriate clustering method
for targeted data type. Thus, this layer also includes a module that can plug in other data clustering
methods. Finally, the top layer includes a user interaction module and a visualisation module. The
interaction module takes and processes the user’s inputs and sends information to the middle layer
or the visualisation module. The visualisation module presents graphs based on data tables from
the middle layer and user preferences.

5. Evaluation study: morphing wing design

To better understand how the iMSNCA framework can help engineering design, we conducted a
preliminary study to evaluate the use of our prototype system in a real design scenario. The study
involved two doctoral students, both with an engineering background, and used an engineering
task involving the design of morphing wings for aircraft.

The study was based on focus group observation and interviews. The reason for choosing this
method was due to our interest in knowing how our visualisation system would be used and what
the advantages and disadvantages our system may have, compared with other tools. We did not
use lab experiments for two reasons. First, we could not find other comparable tools that can offer
similar support for multi-dimensional and multiscale data clustering and aggregation. Without
such tools for comparison, a controlled lab experiment was less meaningful. Second, it was not
our interest to measure user performances (e.g. task completion time) when using our system as a
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stand-along tool. Our ultimate goal is to integrate this multi-dimensional and multiscale clustering
and aggregation tool with other visualisation systems, such as ATSV (Stump et al. 2003, 2004).

5.1. Design task and design data

Recently, there has been military and commercial interest in designing a wing that can ‘morph’
from one configuration to another to improve aircraft performance during each phase of its mission
(Lesieutre et al. 2006). A potential drawback of such a morphing wing is the added weight due
to the actuators and structural supports that it would require. This requires trade-offs during their
design, namely maximising the change in wing shape while minimising the added structural
weight.

For this study, we varied six input (design) variables to generate 716 different design alternatives
(note: several input combinations are not feasible designs). These six variables and their possible
values are:

(1) Gross weight (Wo): 4 levels (1, 10, 100, 1000)
(2) Cell material (Mat): 2 levels (Mat 1 or Mat 2)
(3) Number of rows (NR): 4 levels (2, 4, 8, 10)
(4) Aspect ratio (AR): 3 levels (2, 3.5, 5)
(5) Cell fraction (Cf): 3 levels (0.5, 0.75, 0.9)
(6) Goal weight (Goal): 3 levels (0.65, 0.75, 0.85)

For each design alternative, we recorded the predicted change in span (dSpan) and structural
weight (Wst). The design objective was to find the best design that maximises dSpan while
minimising Wst, i.e. the design that offers the best compromise between these two competing
objectives. While this type of problem is traditionally solved using multi-objective optimisation
techniques (Browne et al. 2006), our intent was to examine whether the iMSNCA framework
can help designers to identify trends and discover new knowledge about this complex structure
that would otherwise be missed if relying solely on optimisation. Given the uniqueness of the
structure, these insights are more useful and important at this conceptual stage of development than
is finding the ‘best’ design, which will certainly change as we learn more about the capabilities
of such a morphing wing.

5.2. Procedure

In a study session, a subject was first informed about the design task – maximising dSpan while
minimising Wst – and was asked to identify the values of design variables that could lead to
the best wing. The subject was given time to study a set of 10 sample designs in a spreadsheet
and to ask questions about the task. The sample designs had the same six design variables and
the two outputs (dSpan and Wst). Among these sample points, two were optimal with maximum
dSpan and minimum Wst, two were unacceptable with minimum dSpan and maximum Wst, and
the remaining were in between these two extremes. To make sure the subject understood the
design task, the subject was asked to identify all possible optimal designs as well as all possible
unacceptable ones before using the visualisation tools. If any design was wrongfully identified,
the subject was given more time to study the data and the objectives until correct identifications
were made.

Two student subjects participated in two separated sessions of the study. In each session,
a subject was first provided with four tools: our prototype system, ATSV, Matlab, and Excel.
ATSV is a system that supports the exploration of a multi-dimensional trade space with a set of
visualisation tools (Stump et al. 2003, 2004). We used its latest version (V 4.6.4, 2008) in the
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study. Matlab and Excel also offer tools for multi-dimensional data visualisation and analysis.
One subject rejected Matlab and chose Microsoft Excel instead because the subject thought the
graphing tools in Excel were sufficient to the task. The other subject declined Excel. Each subject
was provided training on the use of our prototype system and the multi-dimensional visualisation
tools inATSV. No training on Matlab or Excel was provided because subjects were already familiar
with these tools.

After training, the subject was given 716 design alternatives and asked to solve the design task.
The subject was told that any of the tools—our prototype, ATSV, Matlab, and Excel—could be
used to optimise the wing and that the activities associated with the use of these tools would be
observed. After finishing the task, the subject was interviewed about the experience in the study.

Both subjects finished the task. One session lasted about 2 h (the subject who used Excel), and
the other session was about 2.5 h (the subject who used Matlab).

5.3. Results

Both subjects correctly identified the values of the four design variables that could lead to the best
wing design. Although two subjects used all three tools in exploring data, their final decisions
were primarily based on the visualisation with our prototype system. Our observations show that
both subjects extensively used the following tools provided by our prototype system:

• choosing individual data dimensions for data clustering and aggregation;
• switching between different aggregation methods to understand the size of data cluster, and the

average value of a dimension of interest;
• combining two or more dimensions in data clustering and aggregation;
• changing the granularity of data clusters in exploration, either along one data dimension or

switch between different dimensions.

Figures 11–14 show some visual results of a subject who relied on our prototype system to analyse
various design variable combinations. Figure 11 is a 2D scatter plot of the outputs – Wst on the
x-axis and dSpan on the y-axis – of all 716 design alternatives.

Figure 12 is a view that shows output data clusters based on a design dimension, namely cell
material (Mat). As shown in the figure, the Mat 2 option (Figure 12(b)) provides noticeably lower
Wst as seen by the points residing close to the y-axis, while for Mat 1 (Figure 12(a)), there are
‘gaps’ along the y-axis for very low values of Wst. This difference implies that the Mat2 option
is probably a better choice.

Figure 13 was used to examine two variables, AR and Wo, at once to identify interesting
correlations between these two dimensions. As shown, when Wo is low (the first row), the impact
of AR on the outputs is less significant, compared with designs with high Wo designs (the second
and third rows). This implies that lower values of AR and Wo are much more preferable since
they yield higher dSpan values for lower Wst. The worst case would be high Wo and high AR
at the lower-right corner, which leads to high Wst and low dSpan – the complete opposite of the
design task given to the subjects.

Based on these trends, the subject constructed a plot to ‘zoom in’ on promising design alterna-
tives. Figure 14 is a view that shows alternatives with the Mat 2 option and Wo = 1 (square) and
Wo = 10 (cross), where the data are clustered based on NR and AR. In the figure, AR increases
from left to right, and NR increases from top to bottom. As shown, if low Wst values are chosen,
then lower NR values are more desired and that lower AR values tend to yield higher values of
dSpan, which satisfy the design goal. The figure also shows that as AR increases, higher NR
values tend to yield lower Wst values, which is an interesting interaction that would be missed
without this multi-dimensional clustering. Finally, the figure shows that Mat 2 is a better option,
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Figure 11. Scatter plot on outputs.

Figure 12. Scatter plots of two data clusters based on cell material (Mat). (a) Cluster on the Mat 1 option. (b) Cluster
on the Mat 2 option.

and that NR and AR are highly correlated at the upper end of their respective ranges, which poses
unique opportunities for resolving this trade-off while also creating the potential to yield a poor
wing design as well.

A couple of interesting user behaviours were observed during the study. First, both subjects
abandoned the tools in Excel and Matlab quickly. The subject who chose Excel actually started
the task in Excel but got frustrated with its graphing tools and switched to ATSV and then our
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20 X. Zhang et al.

Figure 13. X–Y plot matrix under two clustering dimensions.

prototype system. The other subject first used all three tools – our prototype, Matlab, and ATSV –
to generate a scatter plot similar to Figure 11. However, after moving to multiscale clustering
views in our prototype, the subject failed to duplicate these views in Matlab and then gave up
Matlab. Interestingly, the subject returned to Matlab after completing the task and used it for
about 15 min.

When both subjects were asked in the post-task interview about why they stopped using Excel
or Matlab, they cited the significant amount of work required to generate the necessary figures
when using the graphing tools in Excel or Matlab as the primary reason. The subject using Matlab
indicated that after finishing the task, Matlab was used to try and replicate the spreadsheet-like
multi-dimensional and multiscale clustering graphs similar to Figure 14 from the prototype system.
The attempt was unsuccessful, however, because it was ‘tedious’ to generate ‘many intermediate
data matrix needed to create similar views’ and to ‘arrange these views in a reasonable way’ for
comparison.

Second, although subjects checked data with ATSV every now and then, they spent most of
their time on our prototype system. One subject often used the 3D scatter plots in ATSV, and the
other used the brush tool inATSV; however, such use was relatively brief, as subjects usually spent
much longer using our prototype system to cluster and aggregate data. In the post-task interview,
subjects said that they used ATSV primarily for the purpose of confirming their findings they
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Figure 14. Three-dimensional clustering. (Clusters on the third dimension are glyph coded.)

got from our prototype system. They also indicated that although the visualisation tools in ATSV
(e.g. brushing, 3D scatter plots) could present different data clusters, it was not easy to compare
clusters of design variables, because (a) data were ‘cluttered within one view’, and (b) no tool
was available to control the size and level of data clusters.

When asked about their opinions on the prototype system and their experience in using it, both
subjects gave positive comments on our prototype system. They believed the design was ‘very
effective’ in assisting information exploration and knowledge discovery in multi-dimensional
data. In particular, the flexibility in ‘combining different design variables at different granularities’
was seen as novel and beneficial. Both subjects regarded the continuous zooming tool as very
useful and provided contexts in understanding the relationship among different data clusters. The
subject using Matlab wanted to replicate our tools in Matlab for future use. Furthermore, one
subject indicated that arranging multiple views side by side based on different data dimensions
had greatly helped the decision-making by simplifying the comparison of different design results.

Some issues were also raised during the post-task interview. First, it was suggested that the
current views, which are still 2D-based, limit the data dimensions that can be combined and
compared. Although our prototype system used glyphs and colour coding to address this issue,
subjects felt that the system should support 3D views. Second, a subject pointed out that view
transitions in changing the level of clustering and switching clustering dimension were abrupt,
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making it difficult to understand how views before and after switching were connected. Further-
more, both subjects mentioned that our multiscale clustering and aggregation tools would benefit
from being integrated into a visualisation tool like ATSV.

6. Discussion

The preliminary evaluation study results are encouraging. It shows that the proposed framework
and the multi-dimensional, multiscale data clustering tools can benefit knowledge exploration
of engineering data. Our tools allow designers to compare different design alternatives from
different dimensions and at different scales and to identify how individual design variables may
affect design outcome and how they may be correlated. Designers can identify some ‘best’designs
from a given data set and the corresponding value regions of design variables. The tool also helps
identify regions that lead to bad (i.e. non-competitive) designs.

The contributions of our multiscale-nested clustering and aggregation framework include the
following. First, our framework outlines a practical method in analysing multi-dimensional data
visually and provides formalised definitions of this method. These definitions can guide the design
and implementation of visualisation tools to analyse multi-dimensional data in engineering design
at different levels of granularity. Second, the user tasks that we discussed in our framework may
shed some light on visual analytics tasks in designer-driven engineering design methods, such
as trade space exploration. Visual analytics becomes increasingly important to tasks like engi-
neering design that deal with large data sets. However, many challenges still exist in developing
general visual analytics tools, including identifying basic analytical tasks and reducing the com-
plexity of information displayed on workspace (Thomas and Cook 2005). Our multiscale-nested
clustering and aggregating approach will not only enrich the repertoire of analytical tasks but
also help to control the amount of information to visualise. Furthermore, our research advocates
a multidisciplinary approach to support engineering design. This approach involves the analy-
ses of a designer’s diverse tasks in manipulating and understanding complicated data, the use
of advanced computational tools to assist data feature detections, and the design of visualisation
tools to present data characteristics that are critical to design. We believe that when the interactions
among designers, design data, data processing algorithms, and design support systems become
more and more important, as seen in trade space exploration, a good design support system must
integrate human factors (e.g. design tasks) and information factors (e.g. data dimensions or data
values).

Some limitations exist in this research. For the theoretical framework, the key tasks are incom-
plete as they are based largely on our empirical observation of engineering design. To improve
and validate the framework, we need to consider more diverse user tasks. On the aspect of system
design and implementation, our prototype can also be enhanced in many ways. For example, we
need better tools for selecting the dimensions of interest. Currently, users need to specify these
dimensions one by one using checkboxes. For large data sets with hundreds, or even thousands, of
dimensions, going through all dimensions to identify interesting ones is a daunting task for users.

Future research efforts will proceed in several directions. First, we will refine our framework by
investigating what other interaction tasks should be included, such as cluster-size manipulation.
Second, we will explore the integration of advanced statistics methods on data clustering and
dimension reduction, as discussed in (Unwin et al. 2006, Cook and Swayne 2007), into our
iMSNCA framework to offer designers more comprehensive data analysis tools. Furthermore, we
plan to validate our framework and system with industry data (e.g. corporate marketing data) and
research data (e.g. physiology data) by soliciting data from engineering designers and making our
prototype system public for downloading.
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