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Thanks to recent advances in computing power and speed, engineers can now generate a
wealth of data on demand to support design decision-making. These advances have
enabled new approaches to search multidimensional trade spaces through interactive
data visualization and exploration. In this paper, we investigate the effectiveness and effi-
ciency of interactive trade space exploration strategies by conducting human subject
experiments with novice and expert users. A single objective, constrained design optimi-
zation problem involving the sizing of an engine combustion chamber is used for this
study. Effectiveness is measured by comparing the best feasible design obtained by each
user, and efficiency is assessed based on the percentage of feasible designs generated by
each user. Results indicate that novices who watch a 5-min training video before the
experiment obtain results that are not significantly different from those obtained by expert
users, and both groups are statistically better than the novices without the training video
in terms of effectiveness and efficiency. Frequency and ordering of the visualization and
exploration tools are also compared to understand the differences in each group’s
search strategy. The implications of the results are discussed along with future work.
[DOI: 10.1115/1.3615685]

Keywords: multidimensional data visualization, design optimization, assessment, user
training

1 Introduction

Engineers routinely use computer-based simulation and analy-
sis models to support design decision-making [1], particularly
during the parametric and detailed stages of design when optimi-
zation tools can be employed. Optimization tools provide one
means to explore multidimensional trade spaces to find the design
solution that maximizes (or minimizes) one (or more) objective
while satisfying relevant constraints [2]. Recent advances in com-
puting power and speed have enabled new interactive approaches
to search trade spaces using multidimensional data visualization
and exploration tools [3,4]. Such approaches allow designers to
“steer” the optimization process while searching for the best (or
Pareto optimal) design(s) [5,6], and recent studies have shown sig-
nificant gains in the computational efficiency by putting designers
back “in-the-loop” during the trade space exploration process [7].

To support interactive trade space exploration, researchers at
Penn State University and the Applied Research Laboratory
(ARL) have been developing the ARL trade space visualizer
(ATSV) since the early 2000s [8,9]. ATSV has evolved into a
platform for conducting research into human-computer interac-
tions (HCIs) by allowing us to study how designers use multidi-
mensional data visualization tools to display and navigate
complex trade spaces to find design solutions [10]. What has

become increasingly apparent in these studies is the importance of
user training, not only in terms of using the software and its capa-
bilities but also in terms of interpreting visual displays that
involve different representations of multidimensional data. The
issue of training is not particular to the capabilities in our software
(see the comparison offered in Ref. [10]), yet it provides a unique
opportunity for us to study it in the context of engineering design.

In this paper, we investigate the effectiveness and efficiency of
interactive trade space exploration strategies by conducting
human subject experiments with novice and expert users solving a
single objective, constrained design problem. Our distinction
between novices and experts derives from their experience with
the visualization and exploration tools available in our software
and not with the problem domain. The capabilities of our software
are summarized in Sec. 3 following a review of related literature
in Sec. 2. The experimental setup, test problem, and user trials are
described in Sec. 4, and the results and their implications are dis-
cussed in Sec. 5. Section 6 provides closing remarks and avenues
for future work.

2 Review of Related Work

Since our software (i.e., ATSV) uses data visualization as the
main form of user feedback from the system, it is important to
understand the differences between novices and experts with
respect to using data visualization tools. Seo and Shneiderman [11]
find that interactive exploration of multidimensional datasets can be
challenging because it is difficult to see patterns in more than three
dimensions. Klein [12] states that expertise is based on a person’s
ability to recognize and match patterns. The ability to perceive
patterns and then to match patterns to actions in decision-making is
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built up through experience and practice [13]. From this we can
gather that novices may not have yet developed the pattern recogni-
tion ability of expert users and therefore may struggle with higher
dimensional data visualization. Viewing data in more than three
dimensions also makes it harder to discover relationships, outliers,
clusters, and gaps in the data [11]. Pattern detection is important
especially for developing user-centered methodologies for interac-
tive trade space exploration because humans are capable of learning
from patterns and using this knowledge to improve their perform-
ance in a manner unattainable by current algorithms [14]. Addition-
ally, Petre and Green [15] find that both perceptual and interpretive
readership skill for graphical representations must be learned. Thus
there is a clear difference between the way novices and experts uti-
lize data visualization tools [16] as less experienced users are
unable to interpret graphical cues that may be helpful. Among the
strategy differences between novices and experts, Petre and Green
[15] state that novice users tend to confuse visibility with relevance;
conversely, experts are able to match patterns and disregard irrele-
vant information.

Many aspects of the interactive trade space exploration process
are akin to naturalistic decision-making, which attempts to
describe how decisions are actually being made in the field. Natu-
ralistic decision-making also involves various goals and subgoals
that are likely to change as new information is received and prior-
ities change [13,17]. Engineering design problems often contain
conflicting goals and time constraints that characterize the circum-
stances for naturalistic decision-making [18]. Recognition-primed
decisions are said to occur in naturalistic decision-making [12],
where experienced decision-makers are able to spend more
resources assessing a situation rather than assessing different
courses of action. Experienced decision-makers do not use their
resources to generate a list of possible decisions before making a
decision; rather, they draw from previous experience to accept
and reject decisions one at a time. This provides the user with
improved situational awareness and enables the decision-maker to
work better under time constraints by being continually prepared
to initiate an action [13]. In this way naturalistic decision-making
is influenced by the expertise of the decision-maker. Studies have
shown that experts place emphasis on situational assessment,
while novices emphasize deciding the course of action [13].

Since expert users have developed the ability to identify the
appropriate path to a solution, they process information in a non-
goal specific manner [19]. Conversely, novices tend to work back-
ward from the solution, which does not promote knowledge
toward nongoal specific problem solving. Since experts use gener-
alities to work toward the solution of a problem, they are better
able to use their knowledge to solve varying problem types that
trade space exploration presents. Another distinction between
novices and experts is the relative frequency that they use specific
processes [20]. Novices tend to use a passive strategy of collecting
data and seeing what happens, whereas an expert’s ability to rea-
son results in a much more varied mix of decision-making proc-
esses. Moreover, according to cognitive models of novices and
experts [21,22], novices need to retrieve knowledge from declara-
tive memory frequently to perform tasks while experts do not.
This should translate into experts using a wider range of tools dur-
ing interactive trade space exploration because they are able to
better see the big picture, whereas novices may become confused
by the process and number of data elements [12]. This is partially
due to the fact that novices treat every piece of information as an
independent unit [23] while experts use “chunking” to treat sev-
eral distinct items of information as a single unit. This allows
experts to track more relevant information and have better situa-
tional awareness than novice decision-makers [20]. Chunking
can also help experts develop suitable mental models to reduce
errors that commonly occur in tasks that require situational aware-
ness [24].

Finally, user expertise affects what a decision-maker needs
from a decision-aiding program such as ATSV. Expert users
desire rapid response times, brief and nondistracting feedback, as

well as the ability to carry out actions with a limited number of
commands [25]. Novice users, on the other hand, require informa-
tive feedback about task accomplishment as well as effective sup-
port methods toward task completion such as instructions, dialog
boxes, and online help. In order for a novice to carry out tasks suc-
cessfully, a limited number of actions should be required [25].
Specifically, Shneiderman [25] suggests that users be allowed to
control the density of information feedback that a system pro-
vides. Similarly, they should be allowed to control the density of
displays, as expert users prefer displays that are more densely
packed than novices. In light of this, a summary of ATSVs multi-
dimensional data visualization tools and visual steering capabil-
ities for decision-aiding is given next.

3 Visualization and Exploration Tools

3.1 Multidimensional Data Visualization Tools. ATSV is
a Java-based application developed to support trade space explo-
ration research [4]. Thus, ATSV is capable of visualizing multi-
dimensional trade spaces using glyph, 1-D and 2-D histograms,
2-D scatter, scatter matrix, parallel coordinate plots, linked
views [26], and brushing [27]. Figure 1(a) shows a glyph plot
that can display eight-dimensional information using the spatial
position of an icon to represent three variables of a data point; an
additional five variables can be represented by the glyph’s size,
color, orientation, transparency, and text overlay (only size and
color are used in this example). Multiple histogram plots can be
displayed within a single window as shown in Fig. 1(b). Parallel
coordinate plots, shown in Fig. 1(c), represent designs using poly-
lines [28] that intersect parallel axes representing data dimensions.
A scatter matrix [see Fig. 1(d)] is used to view multiple combina-
tions of 2-D scatter plots.

3.2 Visual Samplers and Exploration Tools. ATSV offers a
variety of exploration tools, as introduced in Ref. [4], to allow
designers to visually guide the generation of new designs within
the trade space. These tools currently available include: (1) basic
sampler, (2) point sampler, (3) attractor sampler, (4) preference
sampler, and (5) Pareto sampler. A brief description of each
follows.

Basic samplers are used to populate the trade space and are typ-
ically invoked if there is no initial data available. The user speci-
fies the number of samples to be generated and the bounds of the
multidimensional hypercube. Monte Carlo sampling [29] is used
to randomly sample the inputs and execute the simulation model,
and the corresponding output is stored in a database. The bounds
of the design variables can be reduced at any point to bias the
samples in a given region.

Point samplers allow the user to manually sample the design
space by moving slider bars for each input variable. As such, this
sampler allows designers to perform one-factor-at-a-time studies
of the simulation model instead of random sampling. After mov-
ing a slider bar, the simulation model is executed at the design
point specified by all of the slider bar settings.

The attractor sampler is used to generate new sample points
near a user-specified location in the trade space. The attractor is
specified in the ATSV interface with a graphical icon that identi-
fies an n-dimensional point in the trade space, and then new sam-
ple points are generated near the attractor—or as close as they can
get to the attractor. Unbeknownst to the user, the attractor gener-
ates new points using the Differential Evolution (DE) algorithm
[30], which assess the fitness of each new sample based on the
normalized Euclidean distance to the attractor. As the population
evolves in DE, the samples get closer and closer to the attractor.
An example is shown in Fig. 2 where the user places attractor_1
to try and generate aircraft wing designs that have a low cost and
high range (see Ref. [10] for the problem description).

Preference-based samplers allow users to populate the trade
space in regions that perform well with respect to a user-defined
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Fig. 2 Example of attractor sampler

Fig. 1 Multidimensional data visualization examples
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preference function. New sample points are generated by the DE
algorithm, but the fitness of each sample is defined by the user’s
preference structure instead of the Euclidean distance. An exam-
ple is shown in Fig. 3. Using ATSV’s brushing and preference
controls, the user specifies a desire to minimize cost and maximize
range of an aircraft with equal weighting [see Fig. 3(a)]. Figure
3(b) shows the initial samples shaded based on this preference,
and Fig. 3(c) shows the new samples that concentrate in the direc-
tion of preference.

Pareto samplers are used to search for the Pareto frontier once
the user has defined his=her preferences for the objectives. The
DE algorithm is used for this sampling but modified to solve
multi-objective problems [31]. An example of this sampler is
shown in Fig. 4. Using the same preference as before (i.e., mini-
mize cost and maximize range), Fig. 4(a) shows the Pareto points
in the initial samples; Fig. 4(b) shows the Pareto frontier after exe-
cuting seven additional generations of the DE with a population
size of 25 points per generation.

Fig. 3 Example of preference-based sampler

Fig. 4 Example of Pareto sampler (Pareto points denoted by 1)
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Using ATSV’s multidimensional data visualization and explo-
ration tools can add complexity to the decision-making process.
Individual data visualization tools afford different analysis tasks
and serve different purposes. Designers need to choose the appro-
priate tool(s) and settings at each step. Designers also need to
know how to combine the individual tools to support decision-
making. For instance, the output of one (e.g., identification of
a “hole” in a glyph plot) may serve as the input to another
(e.g., specification of an attractor to explore this region).
Properly sequencing the visualization tools can greatly enhance
the decision-making process; unfortunately, such knowledge is
not intuitive or obvious to users and training is required. Section 4
describes the experimental setup used to investigate the use
of these visualization and exploration tools to support decision-
making during trade space exploration.

4 Experimental Setup and User Trials

The development of ATSV and our testing methods have been
influenced by work with practitioners [10,32], and many well-
established usability inspection methods for HCI exist [33]. For
the purposes of this analysis, we use a combination of empirical
and formal testing with human subjects to test their interactive
search strategies while evaluating user performance. This section
describes the test problem, the performance measures, and the par-
ticipants involved in the study.

4.1 Test Problem. The test problem used in this study is the
engine combustion chamber design model [34] depicted in Fig. 5.
It is a single objective, constrained optimization problem with five
input (design) variables. The upper and lower bounds of the five
design variables are listed in Table 1. The original analyses can be
found in Ref. [34], and we use the formulation in Ref. [35], which
divides the problem into equations pertinent to engine geometry
and thermodynamics.

The objective in this problem is to maximize the specific power
of the combustion chamber, or in this case to minimize the nega-
tive specific power (NSP). NSP is a function of b, dI, cr, and w; it
is indirectly affected by dE, which impacts the sizing of the cham-
ber. In the study, participants are only asked to optimize the com-
bustion chamber using the geometry analyses that are summarized
in the brush=preference control settings in Fig. 6. As seen in the
figure, the Geometry subsystem has six constraints that limit the
stroke, bore wall thickness, engine height, valve structure, and
valve diameter (minimum and maximum). The constraints are for-
mulated so that values less than or equal to zero yield a feasible
design.

4.2 Performance Measures. Two performance measures
were used to assess user effectiveness and efficiency. The first
was the best feasible design obtained by the user, i.e., the design
with the lowest NSP value that satisfied all of the constraints. The
best feasible design indicates users’ effectiveness with the visual-
ization and exploration tools. The nature of the objective function
allows designs to have a very large range of NSP values, from
over þ1000 to around �60 (as seen in the brush controls in Fig.
6). Given that only negative NSP values are acceptable, it is easy
to see how large positive values of NSP can skew the dataset
given the larger range of positive NSP values. Thus, the Modified
Thompson Tau [36] technique was used to identify and discard
outliers.

Fig. 5 Definition of combustion chamber design variables [34]

Table 1 Inputs and bounds for combustion chamber

Design
Variable Full Name

Lower
Bound

Upper
Bound

b cylinder bore, mm 70 90
dI intake valve diameter, mm 25 50
dE exhaust valve diameter, mm 25 50
cr compression ratio 6 12
w revolutions per minute at peak power, �1000 5 12

Fig. 6 Brush=preference control settings for the geometry subsystem
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The second measure was the percentage of feasible designs
generated during a single trial, which provides a measure of the
users’ efficiency with the tools. Since relatively few designs were
generated by some of the users in the study, this metric is more in-
formative than the total number of designs that were generated.
Thus, decision-makers who have a higher percentage of feasible
designs are considered more efficient in their use of the visualiza-
tion and exploration tools since they wasted less computational
resources on infeasible designs.

In addition to these two measures, we also look at the correla-
tion between the two measures to see if there are any trends. We
also study the frequency that each visualization and exploration
tool is used as well as the transitions between specific tools. Inves-
tigating these aspects of the results provides insight into the users’
strategies for trade space exploration.

4.3 Description of Participants and User Trials. Three sets
of data were obtained for our experiment: (1) novices without a
training video, (2) novices with a training video, and (3) expert
users. Our distinction between novices and experts derives from
their experience with the visualization and exploration tools (i.e.,
ATSV) and not with the problem domain (i.e., the combustion
chamber). They all had nearly the same level of domain expertise,
in that no one had any experience solving the combustion cham-
ber problem prior to this experiment. The novice users consisted
of juniors, seniors, and first-year graduate students in mechanical
and industrial engineering. These students were recruited ran-
domly through email and in-class announcements, and they were
not compensated for their participation in the study. Novices were
recruited for the without video group while the training videos
were being developed; then a second set of novices were recruited
for the training video group. Meanwhile, expert users were
research associates from the Applied Research Laboratory that
had 3–6 yr of experience developing and working with ATSV.
They were recruited through direct contact given the limited num-
ber of them available. While many of the experts had had
advanced graduate studies, knowledge about multi-objective opti-
mization and trade studies was not relevant given the single objec-
tive nature of the combustion chamber problem. In total, 60
participants gave us consent to use their data: (i) 27 novice users

without video, (ii) 27 novice users with video, and (iii) six expert
users.

For the user trials, both sets of novice users received a fifteen
minute overview of ATSV, which described its visualization tools
and exploration capabilities. The second set of novices saw an
additional 5 min training video after the overview before the
experiment. The training video was designed to demonstrate
effective visualization and exploration strategies based on an ear-
lier pilot study [37] applied to a different test problem. Expert
users skipped the overview and the training video given their fa-
miliarity with ATSV.

After reading an overview of the combustion chamber problem
and providing consent to use their data, users were given 10 min
to solve the problem using ATSV. When time expired, users were
instructed to submit their log file that recorded all of their actions
in ATSV, and no personal information was recorded in the log file
as users were told before providing consent. From this log file, we
were able to quantify the frequency that each visualization and ex-
ploration tool was used by each participant and how many designs
they generated during the analysis. The log file also listed all of
the feasible design points (i.e., designs that satisfied all of the con-
straints) that were generated by each user, from which the total
number of designs, the number of feasible designs, and the best
feasible design were extracted for our analysis.

5 Analysis and Discussion of Results

5.1 Analysis of NSP Values (Effectiveness). The distribu-
tions of the best feasible designs (i.e., lowest NSP values) for each
user group are plotted in Fig. 7. Outlier points in the novice
groups were removed in accordance with the discussion in Sec.
4.2 to avoid skewing the datasets. Even though a majority of the
novices performed with similar results, including the outliers in
the data would have skewed the mean NSP value for all novices
from �42.31 (with no outliers) to 48.01. Removing these outliers
actually benefits the novice groups by making their performance,
on average, better for analysis. As a result, statistically significant
differences are all the more meaningful.

Figure 8 plots the average best feasible NSP value for each
group after removing outliers. Comparisons between groups was
performed using two-sample t-tests (two-tailed un-paired sample

Fig. 7 Distribution of best feasible designs for novice and expert groups
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testing [38]), and p-values less than 0.05 indicate a statistically
significant difference between datasets. As evident from the fig-
ure, there was a statistically significant difference between the
novices without video and the novices with video (p< 0.001) and
experts (p< 0.001); however, there was not a statistically signifi-
cant difference between the performance of novices with video
and the experts (p¼ 0.405). This result is encouraging and surpris-
ing. It is encouraging to see that even a minimal amount of train-
ing (5 min video) can have a large impact on the performance of
novice users, and it is surprising that their performance is indistin-
guishable from the experts given the large disparity with the novi-
ces without the video. In fact, we randomly generated ten sets of
833 points (the average number of points that the novices without
video generated) and found that there was no statistically signifi-
cant difference between the results from the random samples and
the novice users without video. This is a discouraging result, but it
reinforces the importance of user training.

5.2 Analysis of Percentage of Feasible Designs
(Efficiency). Figure 9 shows the average percentage of feasible
designs for the three user groups. As before, the experts and novi-
ces with video were able to produce significantly higher percen-
tages of feasible designs (p< 0.001) compared to the novices
without the video. This suggests that the novices with video, like
the experts, are much more efficient when exploring the trade
space and focusing their designs in an area of interest. While it
looks like the experts are considerably more efficient at finding
feasible designs (21.05% versus 12.68%, on average), there is not
a statistically significant difference between the experts and novi-
ces with video (p¼ 0.211). Figure 10 sheds light on this.

In Fig. 10, we see a positive correlation between the percentage
of feasible designs and lower NSP values for the experts and novi-
ces with video, but we also observe wide variation in the experts’
ability to find feasible designs in the trade space. Upon further
inspection of the data, we find that the problem lies with the over-
all number of designs generated. In one extreme, an expert gener-
ated 13,707 designs, of which only 37 (¼0.27%) were feasible;
meanwhile, another expert generated only 4075 designs, of which
2306 (¼56.59%) were feasible. The novices with video were
equally scattered in their ability to identify feasible designs in the
trade space, and therefore, the two groups are not statistically dif-
ferent. To gain more insight into how these three user groups
explored the trade space, we delve into specific tool usage next.

5.3 Analysis of Trade Space Exploration Strategies. In
addition to the two performance measures, we also examined the
frequency that each visualization and exploration tool was used
by each group as well as the transitions between tools to gain
insight into different users’ exploration strategies. The usage stat-
ics are discussed next. Section 5.3.2 discusses the state transition
activity diagrams [39] to gain further insight into the specific strat-
egies and procedural knowledge used by the different groups.

5.3.1 Usage of Visualization and Exploration Tools. Figure
11 shows the frequency that each visualization and exploration
tool was used by each user group. We can immediately note the
limited range of visualization tools that the novices used without
the training video employed. Almost every novice user in this cat-
egory relied on the 2-D scatter plots as their primary method for
visualizing the trade space. From the log files it could be seen that
students used many variations of 2-D scatter plots and sometimes
used multiple scatter plots simultaneously. This result suggests
that novice users without the training video are more comfortable

Fig. 8 Average NSP values for novice and expert groups

Fig. 9 Comparison based on average percentage of feasible
designs

Fig. 10 Scatter plot of percentage of feasible designs and NSP
values
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using lower-dimension visualization tools as fewer than half of
them used 3-D glyph plots.

Figure 11 also shows that the novices without the training video
never used any of the higher dimensional visualization tools (e.g.,
scatter matrices, parallel coordinates, 1-D and 2-D histograms),
even though they were introduced to these tools. This may indi-
cate a tendency for the novices to use the visualization tools with
which they are most familiar and not try new tools when learning
how to use ATSV. However, since none of the experts used histo-
gram plots either, this may indicate that they were not appropriate
for this particular design problem. Unlike the novices without the
training video, expert users employed a wide variety of visualiza-
tion tools both individually and as a group. One of the goals of the
training video was to guide the novice users to use these higher
dimensional visualization tools to help them better understand and
visualize the trade space. The video sought to encourage users to
employ a wider variety of visualization tools to help them explore
the trade space while also helping them understand when each vis-
ualization tool was situationally appropriate. This goal seems to
have been accomplished as the novices who viewed the training
video took advantage of a wider range of visualization tools simi-
lar to the experts. As seen in Fig. 11, the usage of scatter and
glyph plots remained constant across novice groups, but there was
a large increase in the percentage of novice decision-makers who
used the scatter matrix and parallel coordinate plots after viewing
the training video.

The results for the exploration (i.e., sampling) tools in Fig. 11
show similar results to the visualization tools. Independent of the
training video, all of the novice users were able to use brushing to
specify their constraints, and every novice user also used the basic
sampler at least once to sample the trade space. Since it is com-
monplace to start a trade space exploration problem with a basic
sampler run, we expected this sampling method to be used by
everyone. What is interesting though is the number of designs the
novices without the video generated through random sampling as
opposed to other methods. Most of these novices used the basic
sampler as their primary sampling method. They were most likely
just trying to sample until they found feasible designs, which indi-

cates that they were goal-oriented but did not have the problem
solving strategy necessary to best reach their objective. Learning
from expert users to understand effective nongoal-oriented prob-
lem solving strategy is desirable.

Although the novices were introduced to all of the sampling
methods, only one-third of novices without the video used the
attractor or point sampler. Very few novices without the video uti-
lized the preference or Pareto sampler. The expert users employed
a wider range of sampling methods similar to their use of a wide
range of visualization tools. As demonstrated by the expert users,
all of the exploration tools can be useful during trade space explo-
ration, and it was important to capture this in the training video to
encourage novice users to employ these tools when appropriate.
With the training video, the novices used a much wider variety of
exploration tools. As seen in Fig. 11, these novices used the pref-
erence sampler, attractor sampler, and Pareto sampler with much
higher frequency compared to the novices without the training
video. Using the point sampler less may have been a consequence
of the time constraint and the increased usage of the other sam-
plers. All of the samplers can be very useful in trade space explo-
ration; therefore, it should be a priority to guide and encourage
users to use these tools when appropriate.

5.3.2 State Transition Activity Diagrams. Figure 12 illus-
trates the state transition activity diagrams [39] for each user
group. In these figures, the circles represent the different explora-
tion tools and the squares represent the different visualization
tools used by the users. The size of the circles is proportional to
the percentage of designs generated using that exploration tool
across the total population of that respective dataset. Similarly,
the size of the squares is proportional to the number of times that
visualization tool was utilized. The arrows between the squares
and circles represent transitions between specific tools (e.g., the
novices without video tended to switch frequently between the ba-
sic sampler and the scatter plot). The weight (thickness) of each
arrow is proportional to the number of times a transition between
those tools was performed. Arrows do not represent the transitions
that were not repeated or that occurred infrequently. The informa-
tion used to create these diagrams was obtained from the log files

Fig. 11 Percentage of users utilizing each visualization and exploration tool
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by manually coding transitions between tools and recording the
number of designs generated with each sampler.

Figure 12(a) represents the average state transitions for the
novices without video. From this diagram we can see that they
relied heavily on the basic sampler and the brushing=preferences
tool. The scatter plot was used as the primary method of visualiz-
ing the data with the glyph plot being used only occasionally.
These novices did not utilize the scatter matrix, parallel coordi-
nates, or histogram plots as noted earlier. They used the attractor
sampler the most frequently; however, nearly twice as many
designs were generated with the basic sampler. The point sampler
and Pareto sampler were used to generate a relatively smaller
number of designs in comparison. In terms of the transitions, there
were many transitions between the basic sampler and the scatter
plot as well as between the basic sampler and brush references.
There are also quite a few transitions between the brush preferen-
ces window and the scatter plot. Most of these novices’ transitions
were between three tools (basic sampler, scatter plot, and brush

preferences) showing that they are primarily utilizing the simplest
tools in ATSV. These novices also often used the attractor within
the scatter plot indicating a preference for lower-dimensional
tools.

Figure 12(b) shows the average state transitions for the expert
users. Similar to the novices without video [see Fig. 12(a)], the
experts utilized the scatter plots with the greatest frequency; they
also frequently used parallel coordinates, scatter matrices, and the
glyph plots when appropriate. One of the notable differences
between the novices without video and the experts is that the
experts used the basic sampler much less frequently. Not captured
in Fig. 12(b) is the fact that experts primarily used the basic sam-
pler to initially populate the trade space and then only used the
more advanced samplers thereafter. The experts generated most of
their designs using the Pareto sampler, which is in sharp contrast
to the novices without training. The attractor and preference sam-
plers were moderately used, while the point sampler was used to
generate relatively few designs.

From Fig. 12(b) the most common expert transitions can also
be seen. In particular, parallel coordinates to attractor sampler was
the most frequent transition, showing that the experts preferred to
use multidimensional attractors combined with parallel coordi-
nates to visualize the trade space. The strongest two-way transi-
tion was between the Pareto sampler and the scatter plot. Many
experts also transitioned between the basic sampler and the scatter
plots. This shows that after initially populating the trade space,
the experts liked to view the designs that were generated before
specifying their preferences and constraints.

Figure 12(c) represents the state activity transitions for the
novices with the training video. Similar to the novices without
video, the novices with video primarily used the scatter plot for
visualization; these novices also used parallel coordinates fre-
quently and the scatter matrix occasionally. The greatest differ-
ence is that these novices relied significantly less on the basic
sampler and instead utilized a wider variety of sampling methods.
The Pareto sampler, which was not used by the novices without
the training video, was used to generate the most designs. The
preference sampler was used to generate a large number of
designs, most likely in an attempt to generate some feasible solu-
tions as suggested in the training video. The attractor was also
used to generate a larger percentage of designs; additionally, par-
allel coordinates replaced the scatter plot as the preferred visual-
ization tool for the attractor sampler. The training video
demonstrated the use of higher dimensional attractors using paral-
lel coordinates, and it appears that many of the novices chose to
replicate this strategy. The novices with the training video also
appear to be doing a better job of utilizing the visualization tools
to guide their design decision-making. They often visualized the
initial population of data before inputting the constraints and pref-
erences, which is similar to the experts’ approach. Their ability to
utilize the visualization tools to guide their design generation is
also supported by the fact that there were not a lot of transitions
between different samplers, but rather, they are referencing the
visualizations both before and after new design generation. Figure
12(c) also shows an even distribution of actions similar to that of
the experts in Fig. 12(b). This suggests that the novices are gain-
ing some procedural decision-making knowledge through the
training video and are not simply relying on repeatedly using the
simplest tools as with the untrained novices in Fig. 12(a).

5.4 Implications of the Results. The results suggest that
without the training video, novice users were able to utilize the
visualization and exploration tools with limited success to find
regions of the trade space that had lots of feasible designs and
good NSP values. In fact, the novices without the video were not
able to significantly improve their objective in the combustion
chamber problem compared to random sampling. Interestingly,
untrained novices using higher dimensional visualization tools
(e.g., 3D glyph plots) actually performed worse than the whole

Fig. 12 State transition activity diagrams
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population of novices [37]. This suggests that without proper
training, novices are unable to use higher dimensional plots effec-
tively to find regions with feasible designs. The utility of this train-
ing was demonstrated through the improved performance among
novices who viewed the training video.

Engineering design problems are very diverse, and the most
appropriate visualization and exploration tools to use will vary
from problem to problem. Understanding in what way individual
tools, or combinations of tools, can be used to gain a better under-
standing of the problem is something that is not easily trained and
is perhaps best learned through experience. The training protocols
developed in this analysis substantially improved the novices’ av-
erage performance by teaching them effective design decision-
making methodology and making them more comparable to the
experts. Since novice users initially do not have a large range of
situational experience to draw upon, training protocols helped
teach novices how to find patterns in the data and to filter out irrel-
evant information. Not captured in the results was the fact that
novices tended to misuse the visualizations they selected by not
viewing the dimensions of greater importance. In this way, they
exhibited the novice tendency of confusing visibility with rele-
vance [14]. With the training video, the novices were better able
to visualize the dimensions of higher importance, namely, the
objective, through parallel coordinates, or by placing the objective
on one of the axis as suggested by the video.

Interestingly, expert users appeared to be split between two dif-
ferent exploration strategies. Two of the experts relied heavily on
visualization tools to find patterns in the data, and then carefully
selected the appropriate sampling techniques. This approach has
proven to be effective for solving any trade space exploration
problem regardless of the number of inputs, constraints, and
objectives [40]. Other experts took advantage of the ability to rap-
idly generate new designs. For this single-objective problem, they
used lower-dimensional visualization tools to study the progres-
sion of the objective function as they applied various sampling
techniques to quickly generate thousands of designs. Regardless
of the technique used, the expert users produced consistently high
performance. They took advantage of the single-objective prob-
lem and generated more designs in the 10-min time frame and per-
formed noticeably better. On the other hand, we have found no
correlation between the number of designs generated and the
expert’s performance for multi-objective problems [40]. It is im-
portant for future work to understand how different trade space
exploration strategies vary in their ability to solve problems with
different numbers of inputs, constraints, and objectives.

6 Conclusions and Future Work

This research suggests that novice users with insufficient train-
ing are ineffective at using our research testbed, ATSV, in particu-
lar, and multidimensional data visualization tools, in general, to
help solve a single objective, constrained design problem. In these
experiments, keeping the novice users’ in-the-loop did not signifi-
cantly improve performance over random sampling. This can be
attributed to the fact that the novices did not know how to effec-
tively use the variety of visualization and exploration tools that
were available to them, but rather used the same tools repeatedly
based on their limited training and experience. Training novices
to use a wider variety of visualization and exploration tools pro-
vided statistically significant improvements in their efficiency and
effectiveness when compared to novices without video. In fact,
the novices with video were not statistically different from the
expert users, which is both a surprising and an encouraging result.

There were many limitations with this work. For this study,
there was a very small population size due to participant availabil-
ity, particularly the number of expert users available. A larger and
more diverse sample population may have produced better and
more robust results. Also, the time that the users were given to
conduct the experiment was limited to 10 min. We would like to
give users more time to explore the trade space to gain more

insight into their knowledge discovery process. Finally, gathering
users’ demographic information and more formal measures of
their usage and domain expertise (e.g., with optimization methods,
with multi-objective optimization, with the particular problem
they are solving) in future studies will enrich our analysis and
strengthen our findings.

Going forward, we plan to perform Cognitive Task Analysis
[12] to elicit the trade space exploration knowledge from expert
users and formulate this information so that novice users can learn
and benefit. This would include the information collected with the
expert study presented in this paper as well as additional expert
studies with different numbers of variables, objectives, and con-
straints. Some of this work has already been conducted comparing
multi-objective problems of varying complexity [40], with other
work to follow. Conducting future studies on experts can develop
basic trade space exploration guidelines to be given to novice
users. Shneiderman [25] states that a guidelines document can
promote consistency among multiple designers. Since decision-
makers are often left without an orderly approach to explore data
[13], this knowledge elicitation would pertain to how to effec-
tively use visualization and sampling tools and when these tools
are most beneficial during trade space exploration. In addition to
consistency, guidelines would also help promote nongoal specific
problem solving, which is characteristic of expert decision-makers
[19]. Additionally, it would be valuable to understand why novi-
ces pick a ‘best’ design when multiple competing objectives are
present, as compared to how an expert would select that design.
Finally, performing evaluation studies on problems with multiple
objectives (constrained and unconstrained) will help us generalize
our findings beyond this single objective example; however, find-
ing suitable metrics for comparing and evaluating users’ results
will be critical given that multi-objective problems yield sets of
nondominated (i.e., Pareto) solutions [41].
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